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Abstract: This paper focuses on solving practical challenges inherent from the use of state-of-
art mobile robotics techniques in a resource hungry embedded mobile unit without inherent
support for hard real-time operation. Such problems include real-time constraints, sensor
acquisition independence from robot movement, multi-rate parallel data acquisition and memory
limitations.
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1. INTRODUCTION

Although theoretical knowledge on the areas of mo-
bile robots localization, map building and pose control
is very well established (See, e.g. Thrun et al. (2006),
Siegwart and Nourbakhsh (2004)), use of such knowl-
edge in ready-to-market products is scarce, has been
very implementation-specific and presents many unfore-
seen challenges. Some products associated with mobile
robotics have reached the ”market” stage and have suc-
ceeded in their niche but the gap between its technol-
ogy and their research counterparts is very wide. The
Roomba(http://irobot.com) for example uses behavioral
robotics in a brute force floor sweeping task. Kiva(http://
kivasystems.com) robots, on the other hand, make use of
extensively mapped and controlled environment in order
to perform complex warehouse automation tasks (See, e.g.
D’Andrea and Wurman (2008)). The recently announced
Neato XV-11 (http://neatorobotics.com) claims to fill
in this gap to some extent; its the first consumer robot
to actually map its surroundings and perform its cleaning
task in an intelligent way. This paper presents the results
of the activity developed with an industrial partner for de-
veloping a mobile robot solution that, also aimed at filling
the aforementioned gap, performs generic high-level tasks
in indoor environments. The robot must be able to localize
itself, map it’s surroundings and navigate autonomously
and consistently within such environment using state-of-
art technology. Also it is crucial in achieving our goals
that the localization and mapping systems performances
are not degraded by robot random movement in reasonable
speeds.

The proposed solution has been developed using the Mi-
crosoft Robotics Studio – MSRS – framework since it
is becoming an industry standard. Software coordination

and high-level interface (in which hypothetical users can
request high-level tasks) were also developed.

This paper presents an alternative Service Oriented Ar-
chitecture (SOA) for SLAM modules for mobile robots
aiming at flexibility and scalability. This solution repre-
sents a different approach to the implementation of Ex-
tended Kalman Filter (EKF) localization and mapping
(SLAM)(See e.g. Leonard and Durrant-Whyte (1991a) and
Leonard and Durrant-Whyte (1991b)) that is independent
of feature’s nature and measurement model. A different
approach to solving common timing problems due to,
for example, communication overhead between different
services, is proposed. Even though many works aim at real-
time localization algorithms, they focus at low computing
times in order to meet predefined deadlines. Our proposed
solution enables the use of more complex SLAM algo-
rithms in situations where normal deadline meeting is not
possible by detecting missed deadlines and correcting its
effects. Also, an overall description of a software-oriented
system focusing on linking the associated theoretical back-
ground with its respective implementation is proposed.

2. RELATED WORKS

Chen and Bai (2008) and Lang et al. (2008) address
the use of SOA and MSRS for simple applications but
do not focus on more complex issues (e.g SLAM, pose
control) within the services context. The use of EKF to
solve the SLAM problem has been around for many years
and most of the recent academic works on SLAM have
moved into newer, more sophisticated, alternatives which
offer many critical improvements towards some of the
pitfalls of that technique. Yan et al. (2009) provide a study
on the drawbacks of such technique, which include poor
performance when the measurement and motion models
are very non linear (such that linearization ceases being



Fig. 1. SLAM Related Services. Green colored services deal
with hardware specific data input and blue colored
ones lie upon higher abstraction layers. Dashed lines
represent optional dependencies.

reasonable), complete unawareness of negative information
by the algorithm and no addressing to the kidnapped robot
problem. More modern techniques include, among others,
the Unscented Kalman Filter (UKF) (See, e.g. Holmes
et al. (2009)) which differs from the EKF approach in
the way linearization is carried but continues employing
unimodal belief distributions and thus suffers substan-
tially from the same drawbacks as EKF and the Factored
Solution to SLAM (FastSLAM) (See, e.g. Fulgenzi et al.
(2009), Grisetti et al. (2007) and Armesto et al. (2008))
which uses Rao Blackwellized Particle Filtering in a hybrid
approach that represents robot’s position belief by multi
modal distributions (discrete particles sets) and map fea-
tures by unimodal distributions. This last technique stands
as the most promising solution since it was shown to be
very scalable and won’t suffer from the aforementioned
drawbacks. Many works address real-time constraints for
similar purposes with satisfactory results (See, e.g. New-
man et al. (2002), Schleicher et al. (2009), Guivant and
Nebot (2001), Davison et al. (2007)) but such approaches
showed of no avail in our experiments.

3. SERVICES ARCHITECTURE

Figure 1 shows our proposed architecture focusing on
services related to SLAM. As a hub for position belief, the
Localization Prediction service holds the robot’s position
belief and integrates (i.e. Prediction) such belief upon
Odometry data. The complementary Mapping, Matching
and Localization Update service holds the map (i.e. envi-
ronment) information that is independent of robot posi-
tion, proceeds in matching observed features to its previ-
ously mapped counterparts and computes the posterior,
updated, beliefs for map and robot position. The Feature
Extraction services (note that these are indeed a subgroup
of different specialized services) handle data from sensors
(e.g. Camera, LRF) and produce abstract, higher level,
information; this services manage the sensor specific inter-
faces generating, from sensor data, lists of generic detected
features (e.g. landmarks, lines) expressed in the global ref-

erence frame (hence the necessary connections between the
Localization Prediction and Feature Extraction services).
Services like Camera, Laser Range Finder and Odometry
are hardware specific and each provides a specific generic
interface common for such class of sensor, this solution is
constantly observed throughout MSRS applications since
it facilitates the construction of higher level services inde-
pendent on underlying hardware technology or simulated
device; it depends only on such generic interface. When
observing the Localization Prediction service, the reader
familiar with SLAM implementations will note that two
commonly coupled parts of SLAM algorithms are decou-
pled, such design decision is explained in Section 4.

Fig. 2. General purpose services that rely on the localiza-
tion infrastructure. Violet colored services deal with
hardware specific output and the gray one deals with
application specific coordination.

Other general purpose services are shown in Figure 2; note
that the services that hold the system state appear in both
diagrams since they act as an information hub between
different systems. Here also, the Differential Drive and
Application Actuators services represent hardware specific
services that provide generic interfaces.

3.1 Local Kinematic Controller

Additionally, we implemented some essential control ser-
vices necessary to truthful evaluation of our system. As
an example, Local Kinematic Controller is an exponential
pose controller used to perform maneuvers like parking,
approaching an object, etc. It is primarily based on the
controller found in Siegwart and Nourbakhsh (2004) but
with some important improvements. In our implementa-
tion, the pose feedback signal is retrieved from the current
belief of the concurrent SLAM service, this leads to some
interesting stability issues since the pose feedback signal is
not smooth (belief updates generate “jumps” when recov-
ering from high pose uncertainty situations). In order to
assure robust behavior, switching the adequate controller
structure (forward or backwards driving) is made possible
throughout the whole controller’s operation cycle. It is



important to note that a hysteresis based protection me-
chanism is required in order to prevent oscillations around
local minima.

3.2 Feature Extraction Services

Extracting abstract features from raw sensor data is very
attractive since it greatly reduces memory consumption
and decreases SLAM computational complexity; addition-
ally this features are more human readable. Examples
of this class of services are Line Feature Extraction and
Reflector Beacon Feature Extraction. It can be shown that
equation 1 gives the theoretical number Nideal of reflecting
echoes for a beacon at distance ρ with diameter Lmarker

detected by a Laser Range Finder with resolution Rlaser

expressed in necho/rad.

Nideal =
Lmarker

ρRlaser
(1)

The detection of the Reflector Beacon features consists in
finding a cluster of adjacent Nmeas reflexive echoes such
that:

Nmeas
∼= Nideal (2)

For Line features, a Split and Merge approach similar to
the one described in Borges and Aldon (2000) and Armesto
and Tornero (2006) was used. One interesting difference
proposed is to use the raw laser range data to infer
which lines are adjacent instead of using the proximity of
centers of gravity as previously proposed. A more detailed
explanation of such algorithms is presented on Algorithm
1.

Algorithm 1. Split and Merge Line Extraction
1 LineExtraction ( rawData )
2
3 // S p l i t s tep
4 c l u s t e r s = split by break point ( rawData )
5 l i n e s = least square l ines ( c l u s t e r s )
6 while max line dispersion ( l i n e s ) >

th r e sho ld
7 for candidate in l i n e s
8 i f dispersion ( candidate ) > th r e sho ld
9 l i n e1 , l i n e 2 = sp l i t ( candidate )

10 l i n e s . remove( candidate )
11 l i n e s .add( l i n e 1 )
12 l i n e s .add( l i n e 2 )
13 l i n e s = least square l ines ( c l u s t e r s )
14
15 //Merge s tep
16 lineAdded = 1
17 while l ineAdded > 0
18 lineAdded = 0
19 for l i n e1 , l i n e 2 in adjacent ( l i n e s )
20 candidate = merge lines ( l i n e1 , l i n e 2 )
21 i f dispersion ( candidate ) < th r e sho ld
22 l i n e s . remove( l i n e1 , l i n e 2 )
23 l i n e s .add( candidate )
24 l ineAdded++

4. SLAM

We chose EKF for our system since it produces very
good results despite its extreme simplicity and it serves
for our purposes in showcasing the whole architecture. In
our implementation we decoupled the two fundamental
sections of the most common EKF SLAM algorithms
focusing more on software advantages and flexibility than
on mathematical clarity and algorithm correlation. Below,
we delve into our implementation of EKF SLAM.

4.1 Splitting Prediction and Update Steps

This design choice enhances our system performance in
numerous ways. It is easy to realize that even when no
belief update is possible (absence of recognized features),
the prediction itself is useful as it provides a reasonable
position belief together with it’s estimated uncertainty.
Another key point resides in the heterogeneous execution
rates and computation times that each step consumes.
Other advantages of this approach include:

• Implicitly solves the problem of multi-rate sensor’s
data;

• Facilitates the use of different implementations of
Matching, Mapping and Update algorithms even con-
currently;

• Addition of Multiple Hypothesis Tracking (MHT) in
the future is straight forward;

• Multiple Robots may share the same instance of the
Matching, Mapping and Update service across the
network (capability inherent from MSRS) in order to
perform distributed SLAM;

• Robot’s state estimation (which is used intensively
by other services) is decoupled from intensive com-
putation services. This provides great performance
improvement when in multi-core platforms.

4.2 Prediction

This step involves integrating the state belief by moving
the position belief accordingly to the applied control ac-
tion (inferred from odometry increments) and by updating
the belief uncertainty (covariance matrix) that will grow
resulting from the motion uncertainty model. The imple-
mentation of this step followed the approaches found in
Siegwart and Nourbakhsh (2004) and Thrun et al. (2006)
without any important changes.

4.3 Data Association & Mapping

Two interesting aspects of our implementation are the
extensive use of object oriented polymorphism and the
support for “previously known” or “exact” map features.
Polymorphism is used to enable the use of heterogeneous
features in the same way. The support for static map
features is interesting in industrial and domestic appli-
cations since it is very reasonable to assume that some
features have their exact position known beforehand. For
example, in a floor cleaning robot, its docking station may
be used as the origin of the global reference frame since
it is stationary and preferably exhibits good detectability;
in a controlled industrial environment, a small number of



“flagship” landmarks can easily be employed to assure cor-
rect correlation between the dynamically generated map
and the environment itself. Such landmarks differ from
normally mapped ones from not having their position in
the estimated state vector and for having very low, static
position uncertainty.

4.4 Correction

The Correction step is carried by iterating through a list of
pairs that contains already correlated map and measured
features; like the prediction step, this implementation
follows the literature without any major change. Noting
that the Jacobian for the measurement model is selected
depending on the feature’s nature.

5. REAL-TIME OPERATION

5.1 Proposed Solution

It is quite obvious that real-time operation is crucial to the
satisfactory performance of this kind of robots. Related
works in this area state that, in order to achieve real-
time operation, a complete iteration of the used SLAM
algorithm must be completed before it’s assigned deadline
(which generally is the system’s period itself) so that, at
each time slot, the robot produces a new state estimation
stemming from observations carried inside that time slot.
Such approach poses great constraints to both, by the
same reason, state estimation frequency and computa-
tional complexity of SLAM algorithm.

Our work in this area differs in the way that we assume
that those deadlines won’t be met; this assumption enables
our Prediction algorithm to run in a much higher rate
than the Update one. The problem that arises from this
assumption is that newer state estimations are delayed
by δt (which in our experiments could easily reach 1s)
and thus simply replacing the current state by them
would generate brutal localization and mapping errors. To
solve such problem we start by assuming that each sensor
reading has an accurate timestamp, assigned as early as
possible, and that either all the services share the same
clock source (which was the studied case) or all clocks
are properly synchronized. Possessing such information, we
ensure that the Prediction step is computed in real time
at frequency fodo, which is reasonable due to the very low
computational cost of its operations, and that a circular
buffer retains the last K received odometric increments. In
this way, when a new pose belief is generated, all odometry
increments newer (in relation to its timestamp) than the
new belief are used on N successive simulated Prediction
Steps.

N = δtfodo (3)

This newer pose belief is then used to replace the current
one. This operation is carried if N < K, otherwise the
update is discarded for being “exceedingly old”. Figure
3 shows a conceptual diagram of our solution. It is also
important to note that circular buffers are used in each
Feature Extraction service to hold the last pose beliefs
and sensor’s readings, each with its timestamp, so that
when the newly extracted features are transfered to the

Fig. 3. Deadline extension mechanism where all exchanged
data carries timestamps. Data is processed only when
there is a timestamp match between the circular
buffers referring to each input stream.

global reference frame, the correct belief is used. Similar
approaches are already being used as in Lu et al. (2005)
and Pornsarayouth and Wongsaisuwan (2009).

From a control point of view, the stability of the localiza-
tion algorithm depends on the ratio of uncertainty growth
(due to successive predictions) to uncertainty shrinking
(due to updates) which must assure a bounded uncer-
tainty for permanent regime states (constant or null robot
velocity). In the case where no movement is carried, the
uncertainty tends to decrease beyond reasonable values,
to avoid this an artificial lower bound is used. Note that
such lower bound is imposed to the covariance matrix
itself after the update step and thus not affecting eventual
accuracy increase. As for constant velocity movement, the
uncertainty tends to grow until a stable limit depending
on velocity itself as long as N is sufficient.

5.2 Results

Figure 4 shows the performance of the Line Feature Ex-
traction service when the robot is spinning with constant
velocity (+1rad/s). Figure 4(a) uses the current (old)
localization belief to transform the detected line from the
robot’s reference frame to the global one. Figure 4(b)
shows the same situation but using a localization belief
with matching timestamp. The consequences of using an
old position belief for the feature extraction can be noted
on Figure 4(a) where the extracted features are drifted
from real feature. The same behavior is observed in punc-
tual landmarks (e.g. Reflector Beacons).

Table 1. Temporal Aspects

Sensor Period(ms) Latency(ms) Computation
Time(ms)

Odometry 50 ± 15 < 2 < 5
Line Features
(LRF)

500 ± 50 < 25 150

Reflector Beacon
Features (LRF)

500 ± 50 < 25 10

EKF Prediction - < 1 < 5
EKF Update - < 1 90



(a) Erroneous Transformation

(b) Correct Transformation

Fig. 4. Line Feature Extraction while spinning at +1rad/s;
orange lines represent real walls.

Table 1 shows many timing aspects of the system. Tasks
related to data acquisition and pre-processing have well
known periods, latency and computation time. Localiza-
tion related tasks (Prediction & Update), on the other
hand, are triggered by notifications from the Feature Ex-
traction services. Note that due to the higher rate of
Odometry readings, in contrast to Line Features ones,
an average of five prediction steps need to be re-applied
(using the mechanism described in Section 5.1) after a
Localization Update steming from Line Features.

6. EXPERIMENTS & FIELD APPLICATION

Our experimental setup consists of a Robulab 80 robot
from Robusoft R©with an embedded PC-104 running Win-
dows XP Embedded R©. Since this platform does not sup-
port hard real-time operation, the adoption of the pro-
posed solution was necessary in order to accomplish satis-
factory performance. This robot uses standard differential
drive with a Castor wheel, has precision encoders in each
of the two driving wheels and uses a Laser Range Finder
able to detect reflecting surfaces.

In a related project, we deployed our system into a
simple but demanding application: an automated system

for Washing Machine inspection in a reliability test lab
(See Cesetti et al. (2010)). In such application, the robot
must navigate in narrow corridors on its way to a specific
washing machine and then approach it to take specific
measurements or perform some operations. Even though
the environment is controlled in such application, mapping
capabilities are required to cope with moving washing
machines, due to its constant vibration, or even with
missing ones. Also, another Feature Extraction service was
developed on top of an existing Line Feature Extraction
service to detect washing machine patterns showing that
those services can be easily stacked and rearranged to
achieve diverse features extraction. In this application,
which is in its final deployment stages, a supervisory
system sends high level task requests (encoded in XML)
which are dynamically executed in a FIFO manner.

Videos of these experiments and demonstrations can be
found in www.das.ufsc.br/~scotti/iva/.

7. CONCLUSION

This paper focused on the deployment of state-of-art
robotics theory into a final industrial or domestic solu-
tion. In pursuing our goal we developed some interesting
mechanisms that may be of great avail for similar works.
Our proposed use of SOA seems very promising and it
already found its way into an industrial application, we
believe that similar schemes will eventually become an
industry standard for robotics applications using this kind
of architecture. Another important contribution of this
paper is our simple mechanism to, in a way, extend real-
time imposed deadlines that has showed itself imperative
to the successful operation of our system.
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