
Design, Implementation and
Evaluation of a Software Solution for
Localization, Navigation and Mission
Management Applied to Autonomous

Mobile Robots

Monografia submetida à Universidade Federal de Santa Catarina

como requisito para a aprovação da disciplina:

DAS 5511: Projeto de Fim de Curso

Clovis Peruchi Scotti

Florianópolis, Março de 2010

Design, Implementation and Evaluation of a Software
Solution for Localization, Navigation and Mission

Management Applied to Autonomous Mobile Robots

Clovis Peruchi Scotti

Esta monografia foi julgada no contexto da disciplina
DAS 5511: Projeto de Fim de Curso

e aprovada na sua forma final pelo
Curso de Engenharia de Controle e Automação Industrial

Banca Examinadora:

Sauro Longhi
Orientador Empresa

Endson Roberto de Pieri
Orientador do Curso

Prof. Augusto Humberto Bruciapaglia
Responsável pela disciplina

Prof. Leandro Buss Becker, Avaliador

Leonardo de Campos Taschetto, Debatedor

Daniel de Macedo Possamai, Debatedor

Acknowledgements

This thesis and related project were held at Università Politecnica delle Marche,

Italy. I would like to thank all my coworkers at the DIIGA department of UNIVPM for

providing such an open and motivated work environment and for coping with the recur-

rent hallway transit restrictions due to incessant robot testing; Gianluca di Buò, Andrea

Cesetti and Mirco Babini for the huge amount of insightful brainstorming sessions on

robotics and general technology; my supervisor Sauro Longhi for giving me the op-

portunity to work in a real, out-of-research, project and at the same time to provide

invaluable research freedom.

My sincere thanks also go to the staff at the spin off IDEA for being somewhat

my temporary family in Ancona and to my good friends that stayed in Italy struggling

with Italian food and the cold weather that makes people work instead of sweat. You all

helped me maintaining my mind sane by providing me unmeasurable amounts of fun.

Finally, I would like to thank my whole family and close friends for being the

ultimate development framework and toolkit for life.

He who makes a beast of himself gets rid of the
pain of being a man.

Dr. Johnson

i

Abstract

The employment of autonomous mobile robots in industrial environments is con-

sidered to be a great promise to the automation of these environments and thus to

the separation of the human worker from manual, highly repetitive or dangerous op-

erations. The use of these robots is limited due to its usual high costs and lack of

flexibility.

This work provides a broad description of the robotics-specific software layer for

a flexible and inexpensive autonomous system for use in different sectors of indus-

try. This system includes an extended Kalman Filter localization system that handles

features of different natures concurrently, a stable pose controller for navigation and

a complete coordination and mission management system, based on a tasks queue,

that provides a web service interface to the robot. This interface is XML based and

is designed to ease its integration with third party systems. Furthermore, the devel-

oped system is deployed into a real application, its performance is evaluated and some

results are presented.

ii

Resumo Estendido

O uso de Robôs Móveis Autônomos em ambientes industriais e laboratoriais

promete dar um gande impulso à automação de certos processos e assim afastar

ainda mais o operador humano de tarefas braçais indesejáveis ou perigosas. Tal tec-

nologia ainda é pouco empregada devido à alta especificidade, ao preço proibitivo das

soluções disponı́veis e às barreiras tecnologicas para o uso prático de robôs móveis.

Em particular, o planejamento de tarefas, a tecnologia de localização e a geração

de trajetórias têm se mostrado bastante restritivos à utilização destes em ambientes

industriais. Este trabalho oferece uma ampla descrição da camada de software es-

pecı́fica à robótica móvel de um sistema industrial autônomo flexı́vel e barato para

emprego em diferentes setores da industria.

O software implementado inclui: um sistema completo de localização que uti-

liza um filtro de Kalman estendido, um sistema de controle de posição usado para

navegação e um sistema completo de coordenação de missão baseado em uma fila

de tarefas.

Ao longo deste trabalho é apresentada uma extensa descrição dos sistemas

de localização e de controle de posição adotados, é proposta uma nova arquitetura

orientada a serviços para sistemas dessa natureza com o objetivo de aumentar a flex-

ibilidade e performance do sistema como um todo e posteriormente uma descrição

mais orientada a implementação é apresentada para os serviços implementados jun-

tamente com uma alternativa para a solução do problema de tempo-real. Após esta

apresentação do sistema, é realizada uma avaliação do mesmo em funcionamento

em um laboratório de controle de qualidade de máquinas de lavar roupa. Nestes

laboratórios, uma grande quantidade de máquinas de lavar roupa são mantidas em

contı́nuo funcionamento para fins de monitoramento. O robô móvel, por sua vez, é

equipado com os equipamentos de medição (e.g. vibrômetro, microfone) e deve vis-

itar periodicamente as máquinas afim de adquirir dados sobre o funcionamento de

cada uma delas.

Em suma, as contribuições relevantes deste trabalho são:

• Estudo e descrição da implementação de um sistema de localização baseado

em um filtro de Kalman estendido com o uso de caracterı́sticas (features) de

iii

diferentes naturezas (e.g. linhas, pontos) concorrentemente (seção 2.4.4.3).

• Apresentação de uma arquitetura orientada a serviços (SOA) especı́fica para

sistemas desta natureza desenvolvida com o intuito de aprimorar os sistemas de

localização, de extração de caracterı́sticas e de controle de posição (capı́tulo 4).

• Uma solução para o problema de tempo-real decorrente da implementação de

um sistema de localização robusto ao movimento aleatório do robô (seção 5.6).

• Um breve estudo de caso do uso de tecnologias modernas de tecnologia da

informação (e.g. SOA, interface XML, web services) na implementação de um

robô móvel.

iv

Contents

Tables of Symbols ix

List of Figures x

1 Introduction 1

1.1 Objectives . 3

1.2 Outline . 4

2 Mobile Robots Localization 5

2.1 Introduction . 5

2.2 Taxonomy of Localization Problems . 6

2.2.1 On confidence and availability of previous knowledge 6

Pose Tracking . 6

Pose Retrieving . 6

Pose Recovering – Kidnapped Robot Problem 6

2.2.2 On Environment Behavior and Entropy 7

Static Environment . 7

Dynamic Environment . 7

2.2.3 On Robot Behavior . 7

Active Localization . 7

Passive Localization . 8

2.3 Deterministic Techniques . 8

2.3.1 Trilateration . 8

2.3.1.1 Global Position System – GPS 8

2.3.1.2 Beacon Positioning System 9

v

2.4 Kalman Filter Based . 9

2.4.1 State Observers . 9

2.4.2 Kalman Filter . 12

2.4.3 Extended Kalman Filter . 14

2.4.4 EKF applied to Mobile Robot’s Localization 17

2.4.4.1 Problem Definition . 17

2.4.4.2 Prediction Step . 18

2.4.4.3 Feature Extraction . 19

2.4.4.4 Feature Matching . 22

2.4.4.5 Correction Step . 23

Reflector Beacon Feature 23

Line Feature . 25

2.4.4.6 Asynchronous Decoupled Implementation 27

2.4.4.7 Further Reading . 29

2.5 Particle Filter Based . 29

3 Pose Control 31

3.1 Differential Drive Robot Model . 31

3.1.1 Justification . 31

3.1.2 Control Signal Representation 32

3.1.3 Kinematic Model . 32

3.2 Control Law . 34

3.3 Stability Discussion . 35

3.4 Reverse Driving . 38

3.5 Final Considerations . 38

4 Services Oriented Architecture for Mobile Robots 41

vi

4.1 Justification . 42

4.2 Related Works . 42

4.3 Design . 43

4.4 Advantages for simulation . 50

5 Services Implementations 51

5.1 Feature Extraction . 51

5.1.1 ReflectorExtraction . 51

5.1.2 LineExtraction . 52

5.1.2.1 Break Point Detection 54

5.1.2.2 Nmin Rationale . 55

5.1.2.3 Detailed algorithm . 55

5.1.2.4 Performance and Preliminary Results 55

5.2 Localization . 58

5.2.1 Prediction Step . 58

5.2.2 Correction Step . 59

5.3 PoseControl . 60

5.4 Supervision and Development . 61

5.5 Network Interface and Mission Management 62

5.6 Adaptations for Real-time operation . 64

6 Specific Application 68

6.1 Introduction . 68

6.2 The Washing Machine Reliability Lab . 68

6.3 Mobile Platform . 70

6.4 Additional Service . 71

6.5 Additional Tasks at the Mission Management Layer 72

vii

6.6 Results . 73

6.6.1 Washing Machine Approach . 73

6.6.2 Integration with external software and Deployment 76

7 Conclusion 78

7.1 Summary . 78

7.2 Future Work . 78

Annex A: XML Messages 80

Bibliography 84

viii

Tables of Symbols

UNIVPM Università Politecnica delle Marche

AGV Autonomous Guided Vehicle

RGB Red, Green and Blue; Common way to represent images

LRF Laser Range Finder

WM Washing Machine

SLAM Simultaneous Localization and Mapping

GPS Global Positioning System

MHT Multi-hypothesis tracking

PF Particle Filter

EKF Extended Kalman Filter

SOA Service Oriented Architecture

MRDS Microsoft Robotics Developers Studio

CCR Concurrency and Coordination Runtime

DSS Decentralized Software Services

DIIGA Dipartimento di Ingegneria Informatica, Gestionale e dell’Automazione

GUI Graphical User Interface

FIFO First In First Out

HTTP Hypertext Transfer Protocol

ix

List of Figures

1.1 Washing Machine Reliability Test Laboratory 3

2.1 Basic State Observer Setup . 10

2.2 State Observer Internal Structure . 11

2.3 Predict and Update functional parts separated. 11

2.4 Predictor and Corrector parts of the Kalman Filter with modeled noise

inputs . 13

2.5 Kalman Filter belief through time. New data in every step is presented

in bold . 15

2.6 Odometers role as control signal measurement 18

2.7 Illustration of successive prediction steps without any correction steps

showing the integration of uncertainty represented by the gray ellipses . 20

2.8 Raw Laser Range Finder output in red from [27]. 21

2.9 Disposition of the LRF and the feature extraction routines. 22

2.10 EKF Localization performance using punctual landmarks through time . 26

2.11 EKF Localization performance using line features through time in a real

experiment. Dark red lines are line features currently being observed,

dark orange ones are stored in the map and the black path is the one

being followed by the robot. 28

3.1 Robot’s velocity in cartesian and polar representations. 33

3.2 Pose controller errors definition. The current and target poses are shown

in blue, the red dashed arrow depicts one possible trajectory to the target

pose and both angles (α and β) orientations are denoted by the black

arrows. 34

3.3 Pose Control Scheme . 34

3.4 MATLAB R© Simulation of pose control from the origin to
(
60, 100

)
with

gains kρ = 3, kα = 8 and kβ = −3.5. 36

x

3.5 MATLAB R© Simulation of the robot starting at
(
0 0
)

performing two ma-

neuvers, to
(
−40 50

)
and

(
40 −10

)
without reverse drive support (3.5a)

and then with (3.5b) . 39

4.1 Property 1: Localization hub . 45

4.2 Property 2: Concurrent and transparent to other services. 45

4.3 Property 3 and 4: Sensor’s hardware independence due to the abstrac-

tion layer . 46

4.4 Criteria for props 5,6,7 . 47

4.5 Intermediate Architecture proposal . 48

4.6 Merging the two services . 48

4.7 Proposed Services Oriented Architecture for Mobile Robots 49

4.8 Screenshot of the simulation environment 50

5.1 Landmarks for detected by the ReflectorExtraction 52

5.2 Maximum Distance Computation . 54

5.3 Noise immunity effects for different Nmin 55

5.4 LineExtraction intermediary and final output for a simulated environment 56

5.5 LineExtraction final output on a real environment 57

5.6 Implemented ad hoc mapping system 60

5.7 Screenshots from the service’s GUI and some of its menus 62

5.8 Web interface screenshot . 63

5.9 Use Case diagram for Mission Management with an application specific

task . 64

5.10 Time-stamp matching at feature extraction 66

5.11 Line Feature Extraction while spinning at +1rad/s; orange lines repre-

sent correct walls from a previously generated map. 66

5.12 Deadline Extension Mechanism . 67

6.1 Laboratory layout reproduced in a simulation environment 69

6.2 Experimental Setup . 69

xi

6.3 Robulab80 Mobile Robot Base . 70

6.4 Approach Pose (red arrows) Parallel to the Washing Machine’s Face

(bold red line) . 72

6.5 Washing Machine’s approaches using the WMApproach service together

with the PoseControl one and concurrently with the localization system 74

6.6 Approaches Accuracy Experiment . 75

6.7 Washing Machine approach for a radially drifted WM 76

xii

Chapter 1: Introduction

Mobile robots exhibits a huge potential for industrial and domestic applications

but until now not much of this systems have found their way out of research. This

work focuses on producing a solution ready for industrial or domestic deployment. De-

veloping such solution involves solving many technological problems taking care with

maintaining the outcome practical, cheap and robust.

The current robotics industry has similarities to the early computer industry in

many senses; robots (mobile or not) are, like early computers, widely employed in high-

end industrial environments but they are expensive and lack flexibility. While computers

became extremely popular, flexible and cheap, robots continue in that early stage being

expensive and lacking flexibility.

Autonomous Guided Vehicles (AGVs) are specialized mobile robots that operate

mainly as autonomous transport systems inside modified environments. AGVs com-

prises a large and lucrative industry and are widely used throughout distinct industry

sectors, from automotive assembly lines to hospitals. The main limitation of the current

AGV technology is its lack of flexibility and standardization; one company that desires

to deploy AGV technology to its operations must be prepared to completely adapt their

environment to the use of such technology. This is so expressive that fitting AGVs into

a legacy production environment is uncommon, the majority of applications of AGVs

considers the use of such systems since the design of the production environment so

that it is compatible with the particular adopted AGV technology. This factors impose

notable limits to the adoption of AGVs in different industry sectors. Developing more

flexible AGV technology can certainly broaden the market for this systems.

It is believed that once mobile robots become flexible to their environment and

assigned task, its adoption will increase sharply. Domestic robots for example, are a

highly desired household item but until now only a small group of products explores

such market. This work focuses in developing a flexible software system for mobile

robots that enables the robot to perform generic tasks (e.g. normal AGV operations) in

a more flexible or dynamic environment.

The challenges in developing such system are numerous and very interdisci-

plinary. Locomotion problems are solved with understanding of mechanisms, kinemat-

ics, dynamics and control theory. Perceptual systems must certainly employ the use

1

of signal processing techniques together with specific knowledge on a certain sensor

technology (e.g. computer vision, laser scanners). Navigation and Localization ca-

pabilities are conceived with the use of computer science, information theory, artificial

intelligence etc. Finally, the integration of that system in a production environment

will eventually employ modern information technology and more computer science. In

fact it is easy to picture even more intricate scenarios with all these knowledge areas

interlacing among themselves in between different parts of the system.

Academic research in this area is very wide and many of the independent so-

lutions used on this work are already well established and well understood; this work

stands as a case study of the integration of many different technologies into an indus-

trial system. In order to establish a well correlated and grounded work, care is taken to

refer to the available literature at its related document sections.

As part of a partnership between Università Politecnica delle Marche (UNIVPM)

and a private enterprise, the developed solution was deployed as an automated system

for Washing Machine inspection in a reliability test laboratory. These laboratories main-

tain a large number of washing machines fully working for very long periods for many

quality control reasons (See Figure 1.1). Common operations carried in such laborato-

ries by human operators include periodically activate some controls in the washing ma-

chines’ control panel and to carry heavy measurement equipment (e.g. microphones,

vibrometers) to each of the test subjects. To automate this application, the robot must

navigate through narrow corridors in between rows of washing machines on its way to

a specific washing machine and then approach it to take some specific measurements

or perform some specific operation. This deployment was very useful to fully evaluate

and test the solution to its full extent and receive feedback from third parties.

2

Figure 1.1: Washing Machine Reliability Test Laboratory

This work was carried in the Università Politecnica delle Marche (UNIVPM), An-

cona - Italy, from September of 2009 to March of 2010.

1.1: Objectives

The main goal of this work is to establish a software solution for mobile robotics

in a ready to market stage. The developed solution must enable a buying costumer to

deploy a robot in an already existing environment with very little adaptation. The task

management must be simple and should exhibit a simple interface for integration with

third party systems (e.g. supervisory systems). Some tasks can be application specific

but they should be easily constructed on top of the, already implemented, navigation

and feature detection & recognition tasks.

In order to achieve the aforementioned goal, a localization system must work

transparently and concurrently with application specific software. Most final users are

3

not even aware of the depth of the localization problem so solving it stands just as a

mean to achieve the desired performance. Navigation and pose control are also very

important and in most applications it will be what an hypothetical costumer is explicitly

looking for. Additionally a flexible and accessible high-level interface to the system

should be provided.

This document aims at describing the relevant parts of such a system with care

on bridging state-of-art theoretical knowledge in mobile robotics to their implementation

in a final solution.

1.2: Outline

This work is divided into chapters that should provide the logical sequence of a

bottom-up design for such system.

Chapter 2 focuses on the problem of Localization and its solutions. In this chap-

ter, a brief discussion on the importance of localization, a review of the most popular

localization algorithms and the extensive description of our choice, Extended Kalman

Filter, are presented.

Chapter 3 describes the problem of Pose Control together with some details of

our implementation.

Chapter 4 describes conceptually the services oriented architecture used in our

system. The used architecture is apparently novel in some ways and its design was

intimately driven by the design of the localization system.

Chapter 5 gives details regarding the implementation of the general purpose

systems as services.

Chapter 6 describes the application in which the system was deployed, the

application-specific service added and a brief performance analysis focused on this

application.

Chapter 7 provides a discussion about the overall performance of the system

during lab tests and in the deployed application.

4

Chapter 2: Mobile Robots Localization

2.1: Introduction

In mobile robotics, localization is the problem of continuously finding a robot’s

pose (which comprises its position and orientation) with satisfactory accuracy and pre-

cision. The pose of a moving object can be fully described by it’s state regarding to

each of its degrees of freedom (DOF). In the general case, an object’s pose can be

expressed by:

ξ6DOF =



x

y

z

ψ

θ

φ


(2.1)

Adding constraints to the system decreases the number of DOF and thus lowers

the dimensionality of an object’s pose. A differential-drive robot operating on a flat

ground, in particular, has only three degrees of freedom due to the constraints implied

by the operation in such conditions. Therefore, in our context, determining the robot

pose consists in estimating:

ξ3DOF =


x

y

θ

 (2.2)

For the unfamiliar reader, this problem may seem trivial since in most common

autonomous systems information regarding the system’s state can commonly be at-

tained by the use of the correct set of sensors. In the particular case of a mobile robot

moving freely, a definitive solution does not exist, in the sense that there is no universal

sensor that working alone measures one’s pose in relation to some known reference

frame.

5

2.2: Taxonomy of Localization Problems

There are many variations of this problem depending of the application requi-

sites, the available sensors, environment entropy, environment behavior and so on.

This section describes the differences between many situations where localization sys-

tems are employed with regard to the most relevant factors.

2.2.1: On confidence and availability of previous knowledge

The confidence on the previous knowledge sustained by the robot regarding

its own pose changes widely between possible applications; in short there are three

possible situations shown here following an increasing degree of difficulty.

Pose Tracking It is assumed that the robot is given its initial pose, or an approx-

imation of it, and should then maintain, or even enhance, the accuracy and certainty

of that pose belief throughout its operation in that given environment. The localization

algorithm can be confident that the robot is not arbitrarily teleported to another location

by any other external system and thus the robot pose only changes due to its own,

modestly noisy, actions.

Pose Retrieving This is an extension of pose tracking variant with the slight dif-

ference that there is no previous knowledge regarding the robot’s pose. In this case

the robot should initially retrieve its pose out of complete uncertainty about it. After a

confident pose belief is obtained, this problem becomes that of pose tracking. In this

variant, like in pose tracking, it is assumed that the robot’s pose only changes due to

its own actions.

Pose Recovering – Kidnapped Robot Problem This is the less restringing of the

variants and can be seen as an extension of the pose retrieving one. In this case,

no total confidence on previous knowledge is ever achieved; this assumption enables

the robot to recover from catastrophic localization errors or even a kidnapping situation,

thus the common Kidnapped Robot Problem name, where the robot is arbitrarily moved

to another, unknown, position by a third party.

6

2.2.2: On Environment Behavior and Entropy

The environment in which the robot performs its operations obviously plays a

major role on the characterization of the problem to be solved; its properties can come

in aid to the localization system (e.g. structured walls and floor, known landmarks,

known geometry) lowering its entropy or they can impose problems like freely moving

objects and general unpredictability. This deep correlation between environment na-

ture (e.g. predictability) and localization system performance stems from the inherent

necessity, from the robot, to acquire some kind of spatial information that correlates the

robot’s pose and some feature of the environment.

Static Environment In some applications the environment where the robot oper-

ates can be maintained strictly static in order to aid in the localization operations. In this

situation, the only continuously changing variables are with regard to the robot itself.

Additionally, some previous knowledge of that static environment can be provided to

the robot in order to leverage the localization system. For example, since the environ-

ment is static, the fixed position of some key landmarks can be provided to the robot to

aid localization and to lock a global reference frame to the one used by the robot.

Dynamic Environment More generally, environments posses moving objects other

than the robot itself. This can be the result of a plethora of events including opening

doors, passing people and even other mobile robots. The growing levels of dynamism

are treated by localization systems in different ways; low dynamism can simply be

treated as sensor noise, intermediary and sparse dynamism can be handled heuris-

tically by credibility-tracking mapping and finally high dynamism can be handled by

adding the dynamic entities to the state vector resulting in more modeling and compu-

tational complexity.

2.2.3: On Robot Behavior

Active Localization In some applications, the robot behavior can come to aid the

localization system. For example, the robot movement and behavior can be used to

help it localizing itself. This active localization approach adds the significant problem of

figuring out which behavior (e.g. which movements) would effectively help. This pattern

is usually employed on systems of pose retrieving or pose recovering when searching

7

for a reasonable pose belief.

Passive Localization Passive Localization assumes that the decisions about robot

movement are not accessible and can behave in a random manner. This is probably

the most common situation since different systems will drive the robot according to its

assigned task.

2.3: Deterministic Techniques

2.3.1: Trilateration

The simplest solution to localization problems is the use of a deterministic global

positioning system. Such systems generally uses trilateration of a group of simultane-

ous distance measurements to known points in a global reference frame to compute

the deterministic position of the measurement device. To estimate the orientation ad-

ditional information can be used (e.g. compass) or it can be inferred indirectly by,

for example, the current motion vector direction together with some knowledge on the

motion constraints of the moving body. Following, a brief description of some of this

systems is presented.

2.3.1.1: Global Position System – GPS

The GPS system, which is maintained by the government of the United States

of America, is generally provided in a black box device that provides detailed informa-

tion on its global position, velocity, altitude etc. This device works by inferring distance

measurements di for at least three different satellites orbiting the earth1; each of this

distance measurement implies that the receiver’s position lays on the surface of an

sphere of radius di. Computing the intersection of such spheres gives the exact po-

sition of the receiver. Mobile robots can take advantage of such signal as it’s position

source and solve part of the problem of localization easily. Unfortunately the use of this

alternative is very limited for a number of reasons: the system relies on external low

power radio signal sources and thus the necessity for constant and concurrent avail-

ability of many signals from different satellites makes its use in indoor or underground
1In order to compute the distance measurements to three satellites, the receiver needs the signal from

at least four satellites. This is due to the fact that the receiver does not have an atomic clock to infer
the correct time.

8

environments difficult, the accuracy of this system is dependent on, generally unpre-

dictable, weather conditions since different atmospheric conditions produce different

noise in the final distance readings and finally its precision is very far from sufficient for

industrial applications2.

2.3.1.2: Beacon Positioning System

Another alternative is to replicate an analogue of a GPS system locally. Many

commercial systems use sets of optical, ultrasound or radio frequency emitters in the

target environment in order to produce a local positioning system without the avail-

ability drawback inherent of the earth-wide systems. This solution is generally very

satisfactory since it provides high precision and accuracy localization. The most ex-

pressive drawbacks of such technology are the lack of flexibility imposed by necessary

environment changes (addition of these emitters) and high cost.

Furthermore, even in applications in which such approach could be employed,

the use of more sophisticated ones greatly increases the performance of the system.

2.4: Kalman Filter Based

One of the most popular and studied techniques for mobile robots localization

employs one specific type of State Observer, the Extended Kalman Filter (EKF). Fol-

lowing we present briefly the logical progression from state observers to the EKF and

its implementation.

2.4.1: State Observers

The localization problem characterizes the common situation where state es-

timators are used: the estimation of a state vector of which no direct measurement

alternative is available. In this case, the state being the robot’s pose. In Control The-

ory, state observers use a mathematical model together with the controls applied to it

and its available measurements to estimate the desired, internal, state variables of that

system.

Figure 2.1 gives a fast idea on the role of a state observer. Note that the state
2A normal GPS with very good signal reception has an average error of a couple of meters which is

far more than the acceptable for industrial indoor applications

9

Figure 2.1: Basic State Observer Setup

vector x, although shown in the diagram, is not accessible and thus the controller uses

xestimate (xf) as its feedback source.

In other words, given a multivariate liner, time invariant, discrete-time system on

standard representation:

xk+1 = Axk +Buuk (2.3)

yk = Cxk (2.4)

where xk can’t be directly measured due to:

rank(C) < dim(X)

the state observer is a dynamic system that produces an estimate xf :

xf,k+1 = f(xf,k, uk, yk) (2.5)

being uk the current input to the system, yk the current available output and xf,k the last

estimate.

The state observer is in itself a multivariate system and its dynamic is governed

by the matrix:

Aobs = A−KC (2.6)

therefore, the project of the state observer consists in finding K such that the eigenval-

ues of Aobs lay inside the stability circle:

abs(λ) < 1 (2.7)

10

Figure 2.2: State Observer Internal Structure

Figure 2.3: Predict and Update functional parts separated.

If designed properly (i.e. the internal model is sufficiently accurate), the output

estimate xf should converge to the real state vector given enough time steps k:

lim
k→∞

(xf,k − xk) = 0 (2.8)

The dynamic of the estimation error ek = xk − xf,k does not depend on the system’s

input or output, depending only on the error present at the initial condition e0. If the

state observer complies with this two requisites, it is known as a Luenberger Observer.

Figure 2.2 is a common way to depict the internal components of the observer.

Figure 2.3 shows another representation of the internal structure of a state ob-

server. This representation can easily be achieved by some block manipulations to the

diagram from Figure 2.2 and is used to show that state observers consists of a predic-

tor part, which simulates the process evolution from its inputs, and a corrector 3 part

that uses the difference between the system’s output and the output from the predicted
3A big portion of the literature uses the term Update instead of Correction. Throughout this work,

both terms are used refering to the same part or step.

11

model to Update the state estimate.

State observers theory deviates from the context of localization and therefore is

not presented here. More information on this topic can be found on [14].

2.4.2: Kalman Filter

A Kalman Filter, initially proposed in 1960 [15], is a special state observer in

which the mean of the squared error for the observations of a stochastic system is

minimized. That is achieved by using information regarding the uncertainty of each

signal when designing the state observer gain K, denominated kalman gain. Given

that the system can be represented by:

xk+1 = Axk +Buuk + wk (2.9)

yk = Cxk + vk (2.10)

with w(k) being the process noise (or control noise) and v(k) being the measurement

noise and both being independent, zero mean, white noise, unimodal gaussian distri-

butions:

p(w) ∼ N(0, R)

p(v) ∼ N(0, Q)

with R and Q being the covariances of those distributions, at a time-step k, the filter

gives an unimodal belief estimate in the form of a mean vector µ(k) and its covariance

matrix Σ(k).

In the prediction part of the filter, along with the normal prediction of state tran-

sition computed from the input u(k), Σ is updated, essentially increased, due to the

process uncertainty:

x̄k = Axk−1 +Buuk (2.11)

Σ̄k = AΣk−1A
T +R (2.12)

The correction part uses a linear relation between the difference yk−Cx̄k and the state

estimate to correct the latter:

xk = x̄k +Kk(yk − Cx̄k) (2.13)

Σk = (I −KC)Σ̄k (2.14)

12

Figure 2.4: Predictor and Corrector parts of the Kalman Filter with modeled noise inputs

Differently from normal state observers, the observer gain Kk is weighted ac-

cordingly to the current ratio of uncertainty between the predicted signal and the mea-

sured one:

Kk = Σ̄kC
T (CΣ̄kC

T +Q)−1 (2.15)

Note that in this discrete form, the state estimate x̄k and the covariance matrix

Σ̄k used on the correction part can be the ones generated by the prediction. This,

sequential approach gives the notion that, in this discrete implementation, one filter

iteration can be divided into two steps:

• Prediction Step – Uses the control input during the last time-step to generate

updated state estimate x̄k and increases covariance Σ̄k.

• Correction Step – Uses the difference between measurement yk and prediction

Cx̄k to generate a correction signal and decreases the covariance Σk.

This separation is very popular in robotics applications and will be extensively used in

the following sections.

The covariances R and Q are very important filter design parameters and should

reflect the expected behavior of the process and the used measurement devices. In

applications where the noise present is accurately described by multivariate normal

distributions, good estimates can be inferred from extensive experimentation or from

intricate process knowledge; in other applications, the filter can still be used given

13

some quantitative reasoning compatible with the specific application. In this latter ap-

plications, the optimal performance of the filter is obviously degraded but sometimes

good results can still be achieved.

Another possible approach is to estimate this matrices on the fly ; for example,

in some applications where A = I (discrete system with no dynamic) it is reasonable

to assume that for u(k) = 0 the overall uncertainty remains the same, R → 0, and

analogously a proportionality relation can be used:

Rk ∝ uk (2.16)

Also, it may be useful to observe the one-dimension equivalent of Equation 2.15

with C = 1, Equation 2.17 where the ratio of covariances becomes obvious:

Kk,1D =
σ̄2
k

σ̄2
k + σ2

Q

(2.17)

with σ2
Q being the variance of the measurement and σ̄2

k the variance of the state vari-

able. An illustration of the 1D case is shown in Figure 2.5.

The main reason why the Kalman Filter alone is not suitable for mobile robots

localization is its assumptions towards the linearity of the control (Bu) and measure-

ment (C) models which are essentially nonlinear in that application. To illustrate this

limitation, picture a robot moving with constant tangential and angular velocities, u =[
νi ωi

]T
, which produces a circular trajectory and the state vector being the common

representation for pose, ξ =
[
X Y θ

]T
; the resulting real pose ξ will indefinitely lay

in a limited circumference showing that a linear Bu is not suitable.

2.4.3: Extended Kalman Filter

The EKF was designed to address the linearity limitation of the Kalman Filter.

Being both the state transition, g and the measurement, h, nonlinear functions such

that:

xk+1 = g(uk, xk) + wk (2.18)

yk = h(xk) + vk (2.19)

14

(a) Uncertain belief (b) First measurement

(c) Correction produces a new belief
with smaller variance

(d) Prediction produces a new belief
with larger variance

(e) New measurement (f) Second Correction and newer be-
lief

Figure 2.5: Kalman Filter belief through time. New data in every step is presented in
bold

15

with g replacing the A and Bu linear transformations from Equation 2.3 and h replacing

C from Equation 2.4, the extended Kalman Filter uses a first order Taylor expansion

to linearize those functions around the current belief at each iteration of the filter. This

partial linearizations produces temporary jacobians equivalents to A,Bu and C for ev-

ery filter iteration which are then known as G, V and H respectively, which are the

evaluations of:

Gk =
∂g(u, µ)

∂µ

∣∣∣∣
u=uk,µ=xk

(2.20)

Vk =
∂g(u, µ)

∂u

∣∣∣∣
u=uk,µ=xk

(2.21)

Hk =
∂h(µ)

∂y

∣∣∣∣
µ=xk

(2.22)

at the present belief. Substituting the g(u, µ) on Equation 2.11 andG and V on Equation

2.12 gives the prediction step:

x̄k = g(xk−1, uk) (2.23)

Σ̄k = GΣk−1G
T + VMV T (2.24)

Note that on equation 2.24, instead of R (from equation 2.12), M is used and V pro-

portionally maps the uncertainty in M to Σ.

Substituting H on Equations 2.15 and 2.14, the function h(µ) on Equation 2.13

and 2.14 gives the correction step:

Kk = Σ̄kH
T (HΣ̄kH

T +Q)−1 (2.25)

xk = x̄k +Kk(yk − h(x̄k)) (2.26)

Σk = (I −KH)Σ̄k (2.27)

16

2.4.4: EKF applied to Mobile Robot’s Localization

2.4.4.1: Problem Definition

Given a differential-drive wheeled mobile robot with encoders in both wheels

and a with an virtual sensor (see section 2.4.4.3) that provides measurements in polar

coordinates to reflector beacon features and measurements, also in polar coordinates,

to line features:

uencoder =

[
∆sr

∆sl

]
(2.28)

ybeacons =

[
ρ

α

]
(2.29)

ylines =

[
r

β

]
(2.30)

with polar coordinates for ybeacons and ylines in the robot reference frame, uencoder ex-

pressed in terms of the incremental traveled distance of the right, ∆sr and left, ∆sl

wheels and given a map that contains a list of beacon features:

mbeacons =

[
mx

my

]
(2.31)

with Cartesian coordinates in the global reference frame, and with line features:

mlines =

[
mr

mbeta

]
(2.32)

also with polar coordinates in the global reference frame. Finally, assuming that such

robot must Passively perform Pose Tracking in a Static Environment, a complete

EKF localization system should include the following:

1. Prediction Step

2. Feature Extraction

3. Feature Matching

4. Correction Step

17

Figure 2.6: Odometers role as control signal measurement

This parts are detailed in the following sections.

2.4.4.2: Prediction Step

The prediction step is responsible for predicting the robot position from informa-

tion regarding the applied control signals. Although not very intuitive, the encoders’

readings, uencoder are used as the control vector since it effectively represents the con-

trol applied by each wheel on the floor. Figure 2.6 shows the role of the odometers on

the localization control system; notice that the gray block is in fact the process which

output localization aims at estimating. By using this approach, the electromechanical

part of the actuator system and its noise/uncertainty are bypassed.

The incremental travel distances (i.e. the state transition function, Equation 2.23)

from encoder signals to state transition, for this kind of robot, is:

g(u, µ) = g(∆sr,∆sl, x, y, θ) =


x

y

θ

+


∆sr+∆sl

2
cos(θ + ∆sr−∆sl

2b
)

∆sr+∆sl
2

sin(θ + ∆sr−∆sl
2b

)
∆sr−∆sl

b

 (2.33)

where b is the distance between the two wheels of the differential-drive robot. The

jacobians Gk and Vk (Equations 2.20,2.21) of g(u, µ) are:

Gk =
[

∂g
∂x

∂g
∂y

∂g
∂θ

]
=


1 0 −∆s sin(θ + ∆θ/2)

0 1 ∆s cos(θ + ∆θ/2)

0 0 1

 (2.34)

18

Vk =
[

∂g
∂∆sr

∂g
∂∆sl

]

=


1
2

cos(θ + ∆θ
2

)− ∆s
2b

sin(θ + ∆θ
2

) 1
2

cos(θ + ∆θ
2

) + ∆s
2b

sin(θ + ∆θ
2

)
1
2

sin(θ + ∆θ
2

) + ∆s
2b

cos(θ + ∆θ
2

) 1
2

sin(θ + ∆θ
2

)− ∆s
2b

cos(θ + ∆θ
2

)
1
b

−1
b

 (2.35)

with:

∆θ =
∆sr −∆sl

b
(2.36)

∆s =
∆sr + ∆sl

2
(2.37)

An error model Mk for the action of each wheel is:

Mk =

[
σ2
r 0

0 σ2
l

]

=

[
kr|∆sr| 0

0 kl|∆sl|

]
(2.38)

where kr and kl are tuned to model uncertainty differences between the two wheels.

Applying the above function g(u, µ), the jacobians and the error model on Equations

2.23 and 2.24 results in the prediction step.

Figure 2.7 illustrates the integration of uncertainty produced by the prediction

step during: a straight drive, a parabolic turn and another straight drive. The ellipses

are drawn from the first two eigenvectors of Σ depicting only the uncertainty on x and y;

uncertainty in θ can indirectly be observed on the uncertainty increase on the direction

perpendicular to that of the movement. In this figure the ellipses dimensions, but not

the rotation, are greatly exaggerated to ease visualization.

2.4.4.3: Feature Extraction

In this context, feature extraction consists in extracting useful information from

large, noisy and high dimensional datasets. This operation is application specific,

sometimes unecessary or can be embedded in the sensor itself. One of the most

popular sensors used in mobile robotics, and used in this work, is the Laser Range

Finder – LRF, this sensor provides a raw array of distance measurements forming a

planar distance profile, generally covering angles near γrange ≈ π. Figure 2.8 shows

19

Figure 2.7: Illustration of successive prediction steps without any correction steps showing
the integration of uncertainty represented by the gray ellipses

graphically the output of that sensor, note that although apparently connected, the out-

put is just a discrete set of readings.

This type of sensor produces large amounts of data and using its raw readings

without any preprocessing is highly inefficient. Together with LRFs in this group are,

among others, video cameras and stereo cameras. For example, when using a camera

image, each pixel on the image is in itself an independent dimension or in a RGB color

image, three dimensions (one for each color channel). This situation is more noticeable

when using vision cameras, Equations 2.39 and 2.41 give an idea of the dimensionality

of the output of those sensors; a typical color image can have:

ndim,CAM = width× height× nchannels (2.39)

ndim,CAM = 640× 480× 3

= 921600

(2.40)

20

Figure 2.8: Raw Laser Range Finder output in red from [27].

dimensions. In the case of the LRF, that could be:

ndim,LRF =
range

resolution
(2.41)

ndim,LRF =
180

0.5
= 360

(2.42)

This problem, can be solved using intermediate computer algorithms that run

through this large datasets (e.g. image, echoes array) extracting smaller sets of fea-

tures with higher level of abstraction (i.e. with less dimensions). This algorithms are

usually encapsulated in a independent subsystem, in hardware or in different software

modules so. This separation is attractive because it gives the idea that the feature

extraction’s output is in fact an intelligent sensor output.

Many common vision application aim at extracting the position
[
x y

]T
of a vis-

ible object in the image; in this application the feature extraction algorithm produces a

bi-dimensional output from a high-dimensionality input dataset. LRF data is commonly

used to extract line features expressed by Equation 2.30 or reflector beacon feature,

expressed by Equation 2.29. Figure 2.9 shows the role of this algorithms. This ap-

proach greatly simplifies the rest of the system and in some cases greatly attenuates

common noise. For example, a line feature extraction algorithm aims at finding the best

line that fits a certain, sometimes large, group of points and from information theory it

21

Figure 2.9: Disposition of the LRF and the feature extraction routines.

is reasonable to expect that the accuracy of the extracted line’s parameters is better

than the the one from the raw points data, thus attenuating noise. This stands true if

the present noise is zero-mean and those effects should be more noticeable with the

growth in the number of points.

2.4.4.4: Feature Matching

Given a multi-feature environment, feature extraction algorithms will produce a

list of features for each sensor measurement. This features alone are of no use for

localization; a matching feature from the map, whose position in the global reference

frame is known, is mandatory to produce a difference signal so that the execution of

the correction step is possible4. Matching a detected feature z to its map counterpart

ẑ is an interesting problem. In short, there is a sequence s =
[
i1 i2 . . . iN

]
that

correctly correlates the indexes of extracted N features to the index of map features

M :

{(z1, ẑi1), (z2, ẑi2), . . . , (zN , ẑiN)} , i ∈ [1,M]

The solution to the matching problem is to find the maximum likelihood correspon-

dence:

s? = arg max
s

N∑
f=1

1

(2π) | Σf |1/2
exp

(
− 1

2
(zf − ẑs(f))

TΣ−1
f (zf − ẑs(f))

)
(2.43)

4In part of the literature, the Feature Matching problem is also known as the Data Association problem
since it consists in finding the correct association between two data sets; the map and the measurements.

22

Note that generally the distance vector will have the form:

(zf − ẑs(f)) =

[
zf,x − ẑs(f),x

zf,y − ẑs(f),y

]
(2.44)

Many particular heuristics can be added here for enhanced credibility, for exam-

ple establishing safety thresholds for minimum acceptable likelihood. Note that equa-

tion 2.43 maximizes the Probability Density Function.

Finally, it is mandatory that Σf is in the same space than the features. One way

to achieve this is to use, in this feature matching stage, the Cartesian representation

for the features. In that case the Σf is taken from the present belief Σ with optional

addition of uncertainty from the measuring process.

2.4.4.5: Correction Step

In this last step, the difference between pairs of matched features is used to

correct the current belief and lower its uncertainty. Assuming that there is a matching

ẑs(f) feature for the one being observed zf , h(µ) must predict the measurement for that

feature:

ẑf = h(µ, ẑs(f))

Equation 2.26 should then be specific to each observed-matching feature pair f :

xk = x̄k +Kk

(
zf − h(x̄k, ẑs(f))

)
(2.45)

Furthermore, the H and Q matrices are dependent on feature’s nature and representa-

tion. In this application, since two different kinds of features are used, the computation

of the correction step selects those matrices according to the nature of the feature. The

derivation of this specific matrices are shown together with some discussion about the

effect of a feature nature on the final localization update.

Reflector Beacon Feature As shown in Equation 2.29, beacon readings are repre-

sented by their polar coordinates centered on the robot and map landmarks are repre-

sented by their Cartesian position. The choice of using the Cartesian representation for

map landmarks is to ease map input, output and visualization during the development

process. In depth, this choice is not of great impact since conversions between the two

representations are simple and fast. In this work, some care is taken to maintain the

23

same representations used in most of the bibliography [27].

For punctual landmarks, h(µ) is simply the transformation from its Cartesian

representation to the polar representation with its origin on the robot. Given a landmark

mi =
[
mi,x mi,y

]T
and a current pose belief ξ =

[
x y θ

]
, the measurement

prediction is:

h(ξ,mi) = ẑi =

[√
(mi,x − x)2 + (mi,y − y)2

atan2(mi,y − y,mi,x − x)− θ

]
(2.46)

which is in fact the measurement model for that kind of landmark.

The Jacobian of the measurement model, defined in Equation 2.22, computed

using 2.46, is

H =

[
∂ρ
∂x

∂ρ
∂y

∂ρ
∂θ

∂α
∂x

∂α
∂y

∂α
∂θ

]
(2.47)

=

 −(mi,x−x)√
q

−(mi,y−y)√
q

0
(mi,y−y)

q

−(mi,x−x)

q
−1

 (2.48)

with, for simplicity:

q = (mi,x − x)2 + (mi,y − y)2

The last specific entity is the measurement noise:

Q =

[
σ2
ρ σρσα

σρσα σ2
α

]
(2.49)

It is interesting to note that adopting ρ and α as independent (Q is diagonal)

gives good practical results. In practical terms, it is very time consuming and some-

times complex to estimate Q accurately. In order to address this limitation, one can

stipulate lower bounds for σ2
ρ and σ2

α because although using values higher than the

actual degrades the performance of the system, it constitutes a, sometimes desired,

conservative approach.

In the application hereby described, what accounts for the largest error source

is the movement of the robot itself because, even though care is taken to accurately

consider each measurement’s timestamp, the laser range finder measurement takes

considerable time and performing them while moving inevitably produces drifted data.

24

Equation 2.50 shows our empirical model for computing Q; ν being the tangential and

ω the angular current velocities.

Q =

[
(0.1 + |ν|0.6)2 0

0 (0.017 + |ω|0.6)2

]
(2.50)

In order to illustrate the effects of correction steps using punctual landmarks,

Figure 2.10 shows a robot driving (in reverse) from a very uncertain pose belief (Fig.

2.10a) until it encounters a landmark (Fig. 2.10b). After this detection, the new un-

certainty is reduced in the direction of the detected landmark but not in that of the

dashed yellow circle. After some more belief updates using only that first landmark,

the uncertainty continues to shrink in the direction of that landmark but not on the other

directions (Fig. 2.10c). In order to reduce the uncertainty even further, the robot starts

to spin (Fig. 2.10d and 2.10e) in search for another landmark (note the active localiza-

tion behavior used in this demonstration). When the detection of the second landmark

occurs, the uncertainty matrix (and thus the drawn 2D only ellipsis) shrinks even fur-

ther until reaching the artificial (i.e. added by software) saturation (Fig. 2.10f). On the

map, white dots represent known landmarks present in the map, blue ones represent

a match between a detected and predicted landmark.

Line Feature Line features are represented by the polar representation of an infinite

line (see Equation 2.30) with the origin coinciding with the global reference frame’s one.

This representation for lines, although not very intuitive, is useful in this application;

normal line representations may cause numerical problems for certain lines.

For line features, h(µ) is: for ρ) the distance function between a 2D point on the

robot and a line; for θ the difference between the robots bearing and the line’s angle

in its polar representation. Given a line lmap =
[
ρmap βmap

]T
in the global reference

frame and a current pose belief ξ =
[
x y θ

]
, the measurement prediction (i.e.

measurement model) is:

h(ξ, li) = ẑi =

[
|ϕ|
β

]
(2.51)

with:

β =

βmap + π if ϕ < 0

βmap otherwise
(2.52)

25

(a) Uncertain belief (b) First detection (blue dot)

(c) Other updates using the same land-
mark

(d) Other updates using the same land-
mark

(e) Spinning to search other landmark (f) Detection of the second landmark in
the upper left corner

Figure 2.10: EKF Localization performance using punctual landmarks through time

26

and:

ϕ = ρmap −
√
x2 + y2 cosψ (2.53)

ψ = βmap − atan2(y, x) (2.54)

The Jacobian of the measurement model, defined in Equation 2.22, computed

using 2.51, is

H =

[
∂ρ
∂x

∂ρ
∂y

∂ρ
∂θ

∂β
∂x

∂β
∂y

∂β
∂θ

]
(2.55)

=

[
− cos β̄ − sin β̄ 0

0 0 −1

]
(2.56)

The last specific vector is the measurement noise, Q, is shown at Eq. 2.57.

Q =

[
σ2
ρ σρσβ

σρσβ σ2
β

]
(2.57)

This matrix is estimated similarly to the one for punctual landmarks (See Eq. 2.50).

2.4.4.6: Asynchronous Decoupled Implementation

In most applications, the signals from encoders and sensors are produced in

different rates or even in sparse rates; the execution time for some feature extraction

algorithms is dependent on the input data and thus varies randomly between lower and

higher known extremes. Additionally, in some situations the feature extraction algorithm

won’t produce any results at all (due to noise or to the actual absence of features).

This heterogeneous nature of the inputs to the EKF gives rise to an interesting

problem: at which rate should the EKF run?

The most trivial solution consists in using the rate from the slowest of the input

signals; in this way the data of the inputs with fastest rates are accumulated in between

the two iterations to be used in the next iteration which occurs when data from the

slowest input source arrives. Another way is to use Asynchronous Holds to extrapolate

the input signal of the inputs with lower rates. This last approach has been employed

by [2].

A third and more simple approach is to asynchronously execute the prediction

27

(a) Uncertain belief, orientation error visible (b) Uncertainty shrinks only in vertical direc-
tion due to line in the bottom of the image

(c) Prediction drifts the uncertainty ellipse (d) Uncertainty shrinks in horizontal direction
due to verical line at the left side of the image

Figure 2.11: EKF Localization performance using line features through time in a real
experiment. Dark red lines are line features currently being observed, dark orange ones
are stored in the map and the black path is the one being followed by the robot.

28

and correction steps, executing each one when its input data is available: the prediction

step whenever odometry data arrives and thus in a higher rate and the correction step

whenever abstract features, extracted from the LRF’s data, arrives. This design choice

enhances the system performance in numerous ways. It is easy to realize that even

when no belief update is possible (absence of extracted features), the prediction step

itself is useful as it provides a reasonable position belief together with it’s estimated

uncertainty. Other advantages of this approach include:

• Implicitly solves the problem of multi-rate sensor’s data;

• If desired, addition of Multiple Hypothesis Tracking (MHT) in the future is straight

forward

• Robot’s state estimation (which is used intensively by other services) is decou-

pled from intensive computation services. This provides great performance im-

provement when in multi-core platforms.

Additionally, section 5.6 gives a solution to the problem of localization in real-time

in the context of the solution we implemented. This solution improves feature extraction

accuracy and handles “old” localization corrections by a technique similar to refiltering.

2.4.4.7: Further Reading

Interesting readings on this topic and into using the extended Kalman filter also

for mapping include [28], [19], [18] and [23].

2.5: Particle Filter Based

Another modern approach to the problems of localization and mapping for mo-

bile robots uses particle filters (PF) or hybrid approaches. These algorithms are ca-

pable of handling non-linear environment treating them as such (not as noise) and are

capable of representing multi-modal non-gaussian probability distributions. PFs use a

finite set of particles to express the current estimate.

This approach relies on the characteristic that given a robot (represented by

a particle) in a certain pose in a certain map, its sensors’ values can be predicted

29

and thus compared against the actual values generating a distance5 measurement

in a multi-dimensional space, particles with small distances (i.e. good particles) are

preserved while the others are removed. Furthermore, continuous re-sampling is done

around good particles to increase accuracy and an equivalent of EKF’s prediction step

is applied to each particle in between two measurements.

This approach is considered to be the most promising technology in this field; it

outperforms all the previous technologies in most metrics. Its most notable pitfalls are

its high computation costs and memory usage.

One of the most popular techniques using this approach is called Montecarlo

Localization. More information on these techniques can be found in [27], [10], [9] and

[22].

5Not necessarily the euclidean distance; in most cases, statistical distances are used to thread dif-
ferent dimensions adequately. One of the most popular distance measures employed in this case is the
Mahalanobis Distance

30

Chapter 3: Pose Control

Another important component of a mobile robot’s software system is its pose

control system. Although some ad hoc alternatives can easily be implemented, a gen-

eral feedback controller that drives a robot between any two poses is very desirable.

In short, this can be described as a feedback control system that drives the robot

from one pose ξi =
[
xi yi θi

]T
to any other ξg =

[
xg yg θg

]T
by acting with the

control vector Uc =
[
ν ω

]T
.

The problem of designing such control system is to establish, first, an error signal

e(t) that represents the distance between the current and target poses and then a

controller:

Uc = fcon(e(t)) (3.1)

that produces the input Uc to the system so that the error e(t) goes to zero in permanent

regime:

lim
t→∞

e(t) = 0 (3.2)

In this chapter, such general pose controller for differential drive mobile robots is pre-

sented together with a brief kinematic modeling of this class of robots.

3.1: Differential Drive Robot Model

3.1.1: Justification

For lightweight mobile robots, it is common to neglect the system’s dynamic in

favor of a simple kinematic model. This is reasonable by a number of reasons:

• Fast Dynamic: in normal operation, the robot’s dynamic is very fast due to it’s

small inertial momentum and can thus be treated as noise.

• Absence of external forces: in general it is assumed that no external forces are

imposing work on the robot. For example, for a stable robot operating in a plain

floor, gravity is constrained by the robot-floor interaction and thus producing no

effects at all, apart from enabling the robot movement through friction.

31

3.1.2: Control Signal Representation

One of the most popular representations for the control signal for differential drive

robots uses its tangential ν and angular ω velocities relative to the robot’s reference

frame. This representation simplifies the system’s model and is also very intuitive for

debugging and monitoring. The mapping to this representation from the velocity of

each wheel (each motor in most applications) is presented here for completeness.

Given that:

• ϕr is the angular speed of the right wheel and ϕl of the left one

• rw is the radius of the driving wheels

• lw is the displacement between the wheels and the center of the robot (suppos-

edly the same for both wheels)

the direct transform Tw→p can be understood as the sum of the motion contribution of

each wheel to the movement of the robot first in the tangential and then in the angular

directions: [
ν

ω

]
= rw

[
1
2

1
2

1
2l
− 1

2l

]
︸ ︷︷ ︸

Tw→p

[
ϕr

ϕl

]
(3.3)

Finally, the inverse transformation Tp→w is equal to T−1
w→p and is always defined for l 6= 0.

3.1.3: Kinematic Model

In the global reference frame and with Cartesian coordinates, the robot velocity

resulting from its relative velocity is:


ẋ

ẏ

θ̇


︸ ︷︷ ︸

ξ̇⊥

=


cos θ 0

sin θ 0

0 1


︸ ︷︷ ︸

R

[
ν

ω

]
(3.4)

with ξ̇⊥ is the robot’s velocity in Cartesian coordinates.

Another way to represent the robot’s pose is to use polar coordinates. Figure

3.1 shows these two representations. In this application it is useful to take the target

32

Figure 3.1: Robot’s velocity in cartesian and polar representations.

pose (including bearing) coincident to the origin of such polar coordinates system; in

that case the current position of the robot can be expressed by:

ρ =
√

∆x2 + ∆y2 (3.5)

α = −θ + atan2(∆y,∆x) (3.6)

β = −θ − α (3.7)

which can be interpreted as:

• α is the difference in the robot’s orientation and the line between current and

target pose (say line ψ)

• ρ is the planar distance between current and target pose’s positions (length of ψ)

• β is the angle difference from line ψ and the target pose

Figure 3.2 shows graphically the three values for one typical situation. Furthermore,

the system can now be described in this new variables:
ρ̇

α̇

β̇

 =


− cosα 0

sinα
ρ

−1

− sinα
ρ

0


[
ν

ω

]
(3.8)

33

Figure 3.2: Pose controller errors definition. The current and target poses are shown in
blue, the red dashed arrow depicts one possible trajectory to the target pose and both
angles (α and β) orientations are denoted by the black arrows.

Figure 3.3: Pose Control Scheme

3.2: Control Law

Figure 3.3 shows a typical scheme of pose control for mobile robots using con-

current localization systems. The coordinates transformation of the error signal is pre-

sented to emphasize that this choice provides many advantages for this application.

The control law design consists in finding KP that drives the error to zero as

stated in equation 3.2.

In traditional linear multivariate feedback systems, KP is usually designed by

pole placement techniques so that the closed-loop poles of the system are stable. This

34

approach is of no avail in this case due to the nonlinear nature of the system’s model.

In this case, the approach adopted is to empirically suggest one control scheme and

then evaluate its stability.

One fairly intuitive, if given the previously mentioned polar representation of the

system, solution is presented in [26]:

[
ν

ω

]
︸ ︷︷ ︸

U

=

[
kρ 0 0

0 kα kβ

]
︸ ︷︷ ︸

KP


ρ

α

β

 (3.9)

From some superficial analysis of the structure choice for KP , it can be noted that:

• the tangential velocity ν is computed solely from the planar distance to the target

position ρ

• the angular velocity ω is computed from from both α and β

• the tangential velocity never changes direction and is always positive for kρ > 0

since ρ is always positive

3.3: Stability Discussion

The closed-loop system is obtained from plugging the equation 3.9 on equation

3.8 producing: 
ρ̇

α̇

β̇

 =


−kρρ cosα

kρ sinα− kα − kββ
−kρ sinα

 (3.10)

which has only the one desired equilibrium point at (ρ, α, β) = (0, 0, 0) and no singularity

at ρ = 0 (the open-loop system had a singularity for this situation). In order to take

advantage of the Grobman-Hartman1 theorem to assure the stability of this system,

the following must be true:

Condition 1 All the eigenvalues of the closed-loop system linearized at the equilibrium

point have nonzero real parts
1Due to historical reasons and not to naming conventions, this theorem is also known as the Hartman-

Grobman theorem

35

Figure 3.4: MATLAB R© Simulation of pose control from the origin to
(
60, 100

)
with gains

kρ = 3, kα = 8 and kβ = −3.5.

36

Using the small-angle approximation:

for x ≈ 0

cosx ≈ 1

sinx ≈ x

the linearization of equation 3.10 at the equilibrium point gives:
ρ̇

α̇

β̇

 =


−kρ 0 0

0 −(kα − kρ) −kβ
0 −kρ 0


︸ ︷︷ ︸

Aeq


ρ

α

β

 (3.11)

which eigenvalues must satisfy condition 1. That can be evaluated using the charac-

teristic polynomial for Aeq and using the Routh-Hurwitz stability criterion for:

0 = (λ+ kρ)(λ
2 + λ(kα − kρ)− kρkβ)

λ3 + kαλ
2 + kρ(kα − kρ − kβ)λ− k2

ρkβ (3.12)

which gives:

Table 3.1: Table for evaluation using the Routh-Hurwitz stability criterion

1 kρ(kα − kρ − kβ)

kα −k2
ρkβ

−kαkρkβ+kαkρ(kα−kρ)

kα
0

−k2
ρkβ 0

Stability is granted if there are no sign changes on the first column; this can be

accomplished by making:

kα > 0

kβ < 0

kρ > 0

kα − kρ > 0 (3.13)

37

3.4: Reverse Driving

So far, it was not considered that the robot can in some applications2 drive in

reverse suggesting that the controller could switch its structure to favor the shortest

path; driving forward or reverse. In short, reverse driving can be achieved simply by

virtually flipping the heading, θrev = θ + π, for both the robot’s current and goal poses

and making νrev = −ν

The decision between forward or reverse driving is also simple and can take into

account the application itself. This reasoning could be:

sign(ν) =

+1 if |α| ≥ φ

−1 if |α| < φ

With φ = π
2

to perform the shortest path from current to goal poses. Other values of

φ can be adopted to favor reverse or forward driving since in both ways the system is

equally stable.

Figure 3.4 depicts the resulting trajectories. Note the difference between figures

3.5a and 3.5b when driving to
(
− 40 50

)
.

3.5: Final Considerations

One final relevant remark is that the pose feedback signal is retrieved from the

current belief of the concurrent SLAM service, thus generating the trajectory in an “on

line” manner corrected at each step. This leads to some interesting stability issues

since the pose feedback signal is not smooth; belief updates generate “jumps” when

recovering from high pose uncertainty situations. For example, if the controller’s choice

(see section 3.4) is carried only one time, a little overshoot would make the robot per-

form complex sharp turns forming an “S” when the same result could be achieve by

simply switching the motion direction.

To overcome this, the choice between forward and reverse driving can be carried

at every time step ensuring that the best direction is chosen but this raises another

problem: the robot can get trapped if |α| = φ, switching indefinitely but not moving

towards the goal pose. To addressing this last problem a hysteresis based protec-
2Safety instruments for collision detection are sometimes only available at the robot’s front and thus

reverse driving is undesired

38

(a) Without reverse drive support

(b) With reverse drive support

Figure 3.5: MATLAB R© Simulation of the robot starting at
(
0 0
)

performing two ma-
neuvers, to

(
− 40 50

)
and

(
40 − 10

)
without reverse drive support (3.5a) and then with

(3.5b)

39

tion mechanism is added to prevent such consecutive switches not comprising stability

since the controller rapidly drives |α| away from φ always shortening the error signal.

Simillar controllers can be found in [4] and [17] and other approaches and im-

provements can be found in [8], [21].

40

Chapter 4: Services Oriented Architecture for Mobile
Robots

Services Oriented Architecture (SOA, also knwon as Service Oriented Com-

puting) is a new programming paradigm that aims at systems in which there is loose

coupling between different software modules, called services. It is believed that SOA

software systems will exhibit a higher level of flexibility and easier maintenance than

their non-SOA counterparts. This systems are characterized by well defined stan-

dardized generic contracts (i.e. interfaces) for each class of offered service. In this

systems, modules are encapsulated so that each module provides a service, thus its

name, specified in one or more of those contracts and utilizes the services from other

modules also specified in those contracts. Optionally, a services directory service is

added to the “network”1 and its address is broadcast to all services.

In normal operation, a service proceeds to perform a certain operation, maybe

requested by another service, using its own resources (e.g. database, hardware, com-

putation power, algorithm etc) and other services. The loose coupling of services stems

from the fact that the coupling is done at runtime and mandated by contracts only.

The communication medium and data structure used by this systems are gener-

ally of high abstraction levels and are intended to ease integration with as many differ-

ent programming languages and platforms as possible. For example, the most popular

data structure is the eXtensible Markup Language (XML) which is human readable,

simple and portable contributing even more to the system’s flexibility and expandability.

In cases where a services directory is present, services generally notify the

services directory of what contracts (e.g. services) they provide and query the services

directory for a given contract to retrieve the address of a service that provides that

desired contract.

In this kind of software, as in most modern software, the choice of the system’s

architecture (i.e. which contracts are provided by who) accounts for much of the sys-

tem’s success or eventual failure.
1Not necessarily a computer network but a mesh of loosely coupled components that share a commu-

nication medium

41

4.1: Justification

The employment of SOA technology for mobile robots is relatively recent since

the abstract, high level layers necessary for SOA’s loose coupling adds significant over-

head that could only be coped with recently due to the advance of the embedded com-

puting power.

Another recent development that leveraged the use of SOA for robotics soft-

ware was the introduction of the Microsoft Robotics Developer Studio R© (MRDS)2 by

Microsoft R© which provides a large framework and set of tools for developing this type

of applications; this framework includes the Concurrency and Coordination Runtime

(CCR) and the Decentralized Software Services (DSS) which together consist in a

software platform to construct applications that demand concurrent and decentralized,

loosely coupled, operation.

Common robotics software is responsible for handling multiple sensors’ input,

perform complex computations from a plethora of sensor data and generate outputs

to control multiple actuators; all this concurrently. Robotics instrumentation is contin-

uously evolving and offers a very wide range of devices each demanding a specific

software module to interact with. This heterogeneity suggests that a decentralized,

loosely coupled, environment is necessary so that control and coordination softwares

can be written independent of the underneath instrumentation technology. The MSRS

was conceived to address those issues; with the DSS providing a complete housing for

decentralized software using the SOA paradigm.

4.2: Related Works

During a preliminary search for related works using both SOA and MRDS lit-

tle work on formalizing a standard architecture that supports more complex robotics

applications (e.g localization, pose control) were found:

• [6] and [16] address the use of SOA and MRDS for simple applications but do not

focus on more complex issues.

• [13] comprises a more complex application but focuses more on the simulation

environment and does not address the localization issue.
2Until 2008 it was called Microsoft Robotics Studio - MSRS

42

• [7] comprises the localization problem but in a different environment, using differ-

ent techniques.

After this analysis we decided to design an architecture scheme from scratch to

meet our specific requisites but paying attention to keep the services generic enough so

that it could be employed in different applications. Differently from what was found in the

literature, in our system the SOA approach plays a significant role on the localization

algorithm implementation.

4.3: Design

In this context, the design of the system architecture consists in establishing

which functionalities should be tightly coupled and which should be loosely, in other

words to decide how granular the modules separation should be in between a big

monolithic solution and a large granular mesh of elementary function providers. In de-

signing such systems there is a trade-off between flexibility and computation overhead

among other interesting factors.

Maybe one of the main contributions of this work is to establish a satisfactory,

services oriented, architecture that would ease the implementation of similar robotics

software.

Given the importance of the localization system (better discussed in Chapter 2),

the developed architecture takes into account many inside particularities of the used

localization systems and some previous knowledge of localization algorithms for mobile

robotics may be necessary to comprehend in full extent the choices made in this stage.

As a first step, the most desired properties of the system should be summarized

so that any design iterations can be checked against this desired properties. Defin-

ing this properties itself is part of the architecture design since it establishes the first

architectural constraints. The following list shows this desired properties:

Property 1: Many systems should have access to the best localization estimate at all

times.

Property 2: The Localization system should work concurrently and transparently to

other services.

43

Property 3: The Localization system should be independent of hardware and sensor

nature.

Property 4: Environment related data should always be feature-based and repre-

sented in a global reference frame.

Property 5: The Localization’s prediction and correction steps should be decoupled

to support asynchronous sensor data (see section 2.4.4.6).

Property 6: Robot and Environment states should be logically separated.

Property 7: The environment’s state should be easily shared among more than one

robot.

In order to comply with the aforementioned properties, we incrementally present

sketches of services and their interactions so that each of the above is addressed

but still paying attention to the trade-offs between simplicity, flexibility and computation

overhead.

As discussed in chapter 2, there is no way to directly measure the robot’s pose,

any feedback system that needs that pose as feedback will use the localization sys-

tem’s output instead. Also, most sensors produce data in local reference frames and

the robot’s full pose is necessary to correctly transform this sensor data to the global

reference frame. These uses for the localization system’s output suggests that such

information should be readily and directly available to any other services otherwise it

would beat the purpose of having a localization algorithm in the first place.

One way to achieve this is to use a central hub that provides that information

across all interested services. It is also important to note that localization estimate

includes both the complete pose of the robot its estimated covariance matrix. Figure

4.1 shows conceptually the interaction of a variety of services that use such informa-

tion and addresses Property 1. Note that in fact the blocks in these diagrams depict

contracts and not services themselves; in this way, as far as one isolated service is

concerned, the other services could be written in any programming language or im-

plemented in any different forms as long as these services continued to obey those

contracts.

To addresses Property 2, the localization system can be set to run in parallel as

an independent service that updates the belief in the localization hub thus achieving

concurrency and transparency. Figure 4.2 shows this separation. Following, figure 4.3

44

Figure 4.1: Property 1: Localization hub

Figure 4.2: Property 2: Concurrent and transparent to other services.

45

Figure 4.3: Property 3 and 4: Sensor’s hardware independence due to the abstraction
layer

addresses Properties 3 and 4 and underlines the additional abstraction layer added

by the feature extraction services. In this way higher level services can be developed

without regard to the underlying hardware or sensor nature. A Laser Range Finder,

for example, produces at the lower logical level an array of distance echoes and fea-

ture extraction services can be used to gather line features from that data. Cameras

produce a large amount of raw data that needs a considerable commonly non-trivial

computer vision system that extracts the useful information from it. See section 2.4.4.3

for more information on the usefulness of this approach.

As extensively discussed in chapter 2, there is a big advantage on separating

the prediction and correction steps to address the problem os multi-rate sensors. This

approach leaves room to continuous development of new correction step implementa-

tions. One could even use more than one of those services concurrently to address

particular situations like a kidnapped robot. This separation, shown in figure 4.4 ad-

dresses Properties 5, 6 and 7. In is interesting to note that the belief regarding the

environment is not necessary to perform the prediction step and that the correction

step can be seen as a functional, state-less, transformation that takes three inputs:

46

Figure 4.4: Criteria for props 5,6,7

• Robot pose belief

• Environment Map

• Measurement

to produce one new pose belief for that robot. This concept suggests that if sepa-

rated, the service that performs the correction step can easily be shared among more

than one robot operating in the same environment and with coincident global reference

frames3.

Figure 4.5 puts the aforementioned services together giving the impression of

a first iteration of the system’s architecture and its interconnections. An analysis of

this first iteration in respect to the computation complexity assigned to each of those

components and the amount of overhead in normal operation reveals that, although

coined in by the aforementioned desired properties, one part of that architecture is

inefficient and adds unnecessary complexity.

The choice of a dedicated “Localization Estimate Provider” service is justified by

its broadcasting role and ideally high baud-rate but seems unnecessary for its bridge

only character only adding overhead. The “Prediction Step” service also runs at the

same high baud-rate (which is in fact the rate at which the localization belief is updated),

and its operations are very lightweight since the prediction step itself is very simple.

This scenario suggests that the “Prediction Step” itself can serve as a centralized,

lightweight localization hub. Using the concept of figure 4.6 and adding additional

necessary services, the system’s architecture becomes the one at figure 4.7.
3The capability of sharing one service among different network nodes, possibly through the Internet,

is native to the MRDS software.

47

Figure 4.5: Intermediate Architecture proposal

Figure 4.6: Merging the two services

48

Figure 4.7: Proposed Services Oriented Architecture for Mobile Robots

49

Figure 4.8: Screenshot of the simulation environment

This architecture proportioned a very flexible and satisfactory environment to

develop and deploy applications like the one described at chapter 6.

4.4: Advantages for simulation

The aforementioned architecture together with the SOA and MRDS technologies

enable exchange between simulation and real operation without any rework nor code

compilation for the higher level services.

Looking at the lower row of contracts on figure 4.7, it can be noted that if services

obeying those contracts are implemented for simulated environments, all it takes to

perform a simulation is to lunch these services instead of the ones that deal with the

“real” hardware and the services directory will take care of linking all the higher level

services to this simulated ones. Figure 4.8 shows a screenshot from the robot inside

MRDS’s simulation environment.

50

Chapter 5: Services Implementations

The robotics software developed during this work provides a good high level en-

vironment for creating mobile robotics solutions in various different niches. Most imag-

inable mobile robotics solutions must a combination of perform localization, mapping,

pose control, trajectory following, feature detection and recognition and task manage-

ment.

In this chapter, a brief description of the implementations of the developed ser-

vices is presented. The complete software solution utilizes the C#, .NET and MRDS

technologies.

5.1: Feature Extraction

As discussed in section 2.4.4.3 from Chapter 2, feature extractions services gen-

erates sets of higher abstraction level information from raw sensor readings in order to

ease the implementation and lower the computational complexity of the localization

system. Since the main feedback sensor used is a laser range finder able to detect

reflecting surfaces, only two types of feature extraction services were implemented:

ReflectorExtraction and LineExtraction.

5.1.1: ReflectorExtraction

One of the features easily detected by some kinds of Laser Range Finders are

reflector objects. To take advantage of that capability, cylinders covered with some kind

of reflector paint or sticker can be deployed to represent a punctual landmark. Figure

5.1.1 shows the objects used in this work.

As mandated by the Feature Extraction contract, the extracted features are rep-

resented by the estimated position of their centers on the global reference frame.

Extracting this features consists in finding adjacent clusters of reflecting echoes

in the data from the laser range finder, validate this cluster against the predicted re-

sponse of the used artificial reflectors and then estimating their centers.

The LRF output data consists in a array of echoes objects that carry a distance

51

(a) Cylinders with reflecting surface (b) Photo taken with flash to emphasize
the reflecting surface

Figure 5.1: Landmarks for detected by the ReflectorExtraction

measurement and a boolean flag that distinguishes reflecting from non-reflecting sur-

faces. Finding the cluster of adjacent reflecting echoes is achieved by a trivial iteration

through the data. Validation, on the other hand, consists in confronting the cluster’s

size against a rough prediction computed from equation 5.1.

Npoints =
Lmarker
ρRlaser

(5.1)

Where Lmarker is the reflector marker’s diameter, Rlaser is the LRF’s resolution (rad) and

ρ is the distance reported by the echo in the middle of the cluster. If any big discrepancy

is detected, the reflector is discarded. Obviously this validation is not perfect and it is

expected that noisy measurements that pass trough this check will be rejected by the

Feature Matching process (see section 2.4.4.4).

5.1.2: LineExtraction

This service, also obeying the Feature Extraction contract, generates line ab-

straction objects from LRF data. Line extraction, or line fitting, alone is a wide research

area and produced many different approaches to this problem. One popular approach

to this problem usesthe Hough transform [12]; this technique is well known and pro-

52

duces very good results but: a) does not take into account the nature of the LRF

sensor; b) produces infinite lines instead of segments and c) is less conservative and

thus produces significantly more false positives. Other approaches can be found at [3]

and [5].

The implemented algorithm uses different parts of the approaches found in the

literature, is implemented in a multi-step manner and in fact extracts line-segments (i.e.

with defined start and end points). One interesting assumption adopted is that the input

points are ordinated according to their angle to the sensor and that no two points lay

in that same angle. This assumption holds true specially for this kind of sensor since

the index of an echo in the data from the LRF maps directly to a measurement angle

(confirming ordination) and since only the closest object in a given direction from the

sensor is detected; the further ones are occluded by this first and thus not detected.

One useful consequence of that assumption is that for any two points that were

to be adjacent in the same line segment on the optimal (i.e. desired) output, they are

also adjacent on the LRF data.

Conceptually, the implemented solution can be divided into:

1. Separate LRF data into “connected” groups by detecting break points (see sec-

tion 5.1.2.1)

2. Sequentially divide each group into a large number of small groups of Nmin points

and computes the best fitting line for that group with the traditional least squares

approach (see section 5.1.2.2)

3. Recursively merge adjacent lines that are close in the lines space and that exhibit

small dispersion

It is easy to note that this algorithm is probabilistic since it starts with a pseudo-random

sample and goes refining it until a stop. It relies in the assumption that some of the

pseudo-randomly generated small segments are in fact good and part of a bigger line.

Although not deterministic and with predictable pitfalls, this approach still produces very

good and fast results in structured environments, which are the ones that one would

be looking for lines in the first place.

This approach is also very conservative and rarely produces false positives,

property also desired for example for localization purposes. Following, notable parts of

53

Figure 5.2: Maximum Distance Computation

the algorithm are discussed, a more detailed version and a short display of its perfor-

mance are presented.

5.1.2.1: Break Point Detection

In order to identify adjacent echoes that are too far from each other to be on a

line, one could compute a maximum value to be used as a threshold. The problem for

computing this value is that, theoretically it does not exist. If the angle β between the

measurement laser beam and the “wall” it is measuring grows near π, the distance d

between the two adjacent echoes grows to infinity. One partial solution is to assume

that there is a limit for β. With this limit and given the LRF resolution α and the echo dis-

tance r one can use the law of sines (equation 5.2) to compute a reasonable maximum

d. Equation 5.4 shows this result.

a

sinA
=

b

sinB
=

c

sinC
(5.2)

dmax =
r sinα

sin β
(5.3)

Which for α = 0.5◦ and β = 175◦ is:

dmax = r0.10012576 (5.4)

54

(a) With Nmin = 3 lines become biased by the echoes noise

(b) With Nmin = 5 the noise tends to be attenuated by the least squares line fitting

Figure 5.3: Noise immunity effects for different Nmin

5.1.2.2: Nmin Rationale

The choice of this parameter is influential to the algorithm’s noise immunity, ex-

ecution speed and output quality. In short, for smaller Nmin the algorithm becomes

less noise immune and slower but tends to produce more “complete” lines; for bigger

Nmin it becomes more robust, faster but produces many “incomplete” lines. Figure

5.1.2.2 shows the resulting small lines for different values of Nmin for the same set of

points that should relate to a single horizontal line but with noisy measurements. In our

implementation, Nmin = 5.

5.1.2.3: Detailed algorithm

Algorithm 1 shows in depth the iterations and function calls performed by that

algorithm.

5.1.2.4: Performance and Preliminary Results

Figures 5.4 and 5.5 show the output of this service and its algorithm. The first

shows the output for a simulated environment and intermediary results after the break

point detection step. The last shows the output for a real environment, in this case one

of the corridors of the DIIGA department at UNIVPM, from three different positions.

55

(a) Green lines denote connections between two adjacent echoes in a break point

(b) Small circles denote the start points of a extracted line feature and blue lines
denote lines that did not merged to any other

Figure 5.4: LineExtraction intermediary and final output for a simulated environment

56

Figure 5.5: LineExtraction final output on a real environment

57

Algorithm 1 Line Feature Extraction

LineExtraction(rawData)

//Split step

clusters = split_by_break_point(rawData)

clusters = split_by_N_min(clusters)

lines = least_square_lines(clusters)

//Merge step

lineAdded = 1

while lineAdded > 0

lineAdded = 0

for line1,line2 in adjacent(lines)

candidate = merge_lines(line1,line2)

if dispersion(candidate) < threshold

lines.remove(line1,line2)

lines.add(candidate)

lineAdded++

lines = remove_too_small(lines)

return lines

5.2: Localization

The localization is maybe the most complex subsystem in this architecture; its

theoretical background and justification rely on some relatively sophisticated control

theory but its implementation, on the other hand, is quite simple. Given the proposed

architecture (i.e. feature abstraction layer and decoupled prediction and correction) the

majority of this implementation, including its inner details, follow what was extensively

discussed at section 2.4.4.

5.2.1: Prediction Step

The ProbOdo2Loc (which stands for Probabilistic Odometry to Localization) ser-

vice implements the Prediction Step contract. In a nutshell it holds: the robot belief

(which include pose and associated covariance matrix), updates that belief at every

message from the odometry (applying equations 2.23 and 2.24 with the matrices pre-

sented in section 2.4.4.2) and provides an interface for belief correction to be used by

the Correction Step service.

58

5.2.2: Correction Step

The EKFLocalization service implements the Correction Step contract and in

addition to the normal operations described on section 2.4.4, it offers a simple mapping

capability and support for loading and saving the current map belief to non-volatile files.

This is very useful in practical applications for fast deployment.

When deploying the system in an environment with static landmarks but which

positions are not known, the capability to save the map to a file is essential; the whole

“setup” process of deploying such system in a different environment consists in driving

the robot around with its mapping capability enabled, then saving the map to a file for

permanent use.

Figures 2.10 and 2.11 were produced with this implementation.

The mapping capability was implemented in this service. It was not described

previously due to its ad hoc nature. Since this capability was not one of the main

requisites for the first application, little effort was put on it. Mapping occurs when an

extracted feature does not match with any in the map (and is not dubiously close to

another mapped feature); this newly mapped features carry a low credibility that is

increased from subsequent detections. This ad hoc solution is explained in figure 5.6.

59

Figure 5.6: Implemented ad hoc mapping system

5.3: PoseControl

Pose Control is achieved by the PoseControl service which implements the con-

troller described in chapter 3 together with some ad hoc additions. For example, it is

common to assume a stop condition for this kind of controller so that the robot stops

when it is in the boundaries of the target pose. Given the error representation (from

60

chapter 3): 
ρ

α

β

 (5.5)

a reasonable stop condition is:

ρ < eρ (5.6)

In our application, typical values of eθ range from 0.02m for accurate positioning to

0.14m in mid-path points. Another ad hoc addition is a heading controller since in

some applications, accuracy in the robot’s heading angle is more important than the

position itself. In this cases, the robot uses the pose controller until the stop condition

5.7 is achieved and then switches to a simple proportional controller that spins the

robot until:

d(θref , θi) < eθ (5.7)

with eθ ranging from 0.08rad to 0.015rad where d(ω1, ω2) is the nonlinear function that

gives the smallest real distance between any two angles. Section 6.6 presents the

performance of this system in some experiments for that application.

5.4: Supervision and Development

In order to ease development, facilitate tests and provide results visualization, a

high-level service CentralMapGUI was implemented to provide a development-oriented

Graphic User Interface (GUI) for the system as a whole. This GUI provides visualiza-

tion of the robot’s pose and map belief together with associated uncertainties, current

sensor measurements and the current path(s) being followed by the robot. Complete

control and configuration of the localization services are possible through user friendly

menus. Figure 5.7 gives a general idea of the user interface and its controls.

61

(a) Control menu for the localization service relating to the use of reflectors

(b) Menu with robot control operations useful for debug and some drawing control

Figure 5.7: Screenshots from the service’s GUI and some of its menus

5.5: Network Interface and Mission Management

On top of all the other services, FSMTaskManager implements the Coordination

and Mission Management contract. This service is responsible for all the switching in

between services and for providing a rich network interface for the whole system.

Aiming at the integration of the current system with existent or legacy (i.e. cos-

tumer) systems, the network interface was implemented so that the robot stands as

a web service for the network. This interface provides general information about the

robot’s position belief, current state (idle, busy), current task, etc. In terms of oper-

ation requests, the user software can send: a) list of tasks, which will be executed

62

Figure 5.8: Web interface screenshot

by the robot in a FIFO manner or b) high priority tasks for operation’s control (e.g

Halt,Resume, Reset).

The provided information can be queried by executing a HTTP GET operation on

the service’s endpoint, namely http://[robot_ip]:[robot_node_port]/fsmtaskmanager/

raw and to enable human operators to easily get information from the system, a web

(HTML) formatted interface is also available at http://[robot_ip]:[robot_node_port]

/fsmtaskmanager. Figure 5.8 is a screenshot of this web interface.

Task requests are sent through HTTP POST operations to the http://[robot_

ip]:[robot_node_port]/fsmtaskmanager endpoint with a list of tasks encoded in XML.

Listing 5.1: An XML task that determines three waypoints the robot should follow

1 <Fol lowLdcVxList>

2 <Vertex X=”5 .45” Y=”−19.0” Theta =”−1.57079” />

3 <Vertex X=”5 .45” Y=”−19.0” Theta =”1.57079” />

4 <Vertex X=”5 .45” Y=”−10.0” Theta =”1.57079” />

5 </ Fol lowLdcVxList>

More examples of these XML messages are presented in Annex A.

In terms of Information Technology, this capability is very desirable in such a

system and already produced many results. For the application presented on chapter

6, the partner company uses a LabVIEW R© application to handle the specific measure-

ment equipment to which the tested Washing Machine is subjected to and to provide

63

a Human Machine Interface (HMI) for a central operator; integrating that application

to the robot’s system was accomplished within less than a week. This event showed

the vast business advantage of using such rich interfaces for this kind of application.

Figure 5.9 shows the Use Cases diagram for the mission management system which

in some ways can be seen as the use case diagram for the robot itself. Additionally,

Figure 5.9: Use Case diagram for Mission Management with an application specific task

support for application specific tasks can easily be added as shown in chapter 6.

5.6: Adaptations for Real-time operation

It is quite obvious that real-time operation is crucial to the satisfactory perfor-

mance of this kind of robots. Related works (see e.g. [25], [11])in this area generally

assume that, in order to enable real-time operation, a complete iteration of the local-

ization (and mapping if applicable) algorithm must be completed before it’s deadline,

which generally is the system’s period itself, so that at each time step the robot pro-

duces a new state estimation stemming from observations carried inside that time step.

Such approach poses great constraints to both, by the same reason, state estimation

frequency and computational complexity of the localization algorithm.

Our work in this area differs in the way that we assume that those deadlines

64

won’t be met; this assumption enables the Prediction service to run in a much higher

rate than the Correction one. The problem that arises from this assumption is that

newer state estimations (from the Correction step) are delayed by δt (which in our

experiments could easily reach 1s) and thus simply replacing the current state by them

would generate brutal localization and mapping errors.

To solve such problem we assume that each sensor reading has an accurate

time-stamp, assigned as early as possible, and that either all the services share the

same clock source or all clocks are properly synchronized. Possessing such informa-

tion, we ensure that the Prediction step is computed in real time at frequency fodo,

which is reasonable due to the very low computational cost of its operations, and that

a circular buffer retains the last K received odometric increments. In this way, when

a new pose belief is generated, all odometry increments newer (in relation to its time-

stamp) than the new belief are used on N successive simulated prediction steps1.

N = δtfodo (5.8)

This newer pose belief is then used to replace the current one. The operation is carried

if N < K, otherwise the update is discarded for being “exceedingly old”. This approach

is similar to the ones described in [20] and [24] but applied to the EKF and mobile

robotics.

Note also that circular buffers are used in each Feature Extraction service for

both pose beliefs and sensors’ readings, each with its time-stamp. An extracted fea-

ture is only transfered to the global reference frame when there is a pose belief with

matching timestamp is available. This match will only occur after some time thus adding

more delay. Figure 5.10 illustrates this aspect.

Figure 5.11 shows the performance of the LineExtraction service when the

robot is spinning with constant velocity (+1rad/s). For figure 5.11a the current (old)

localization belief was used to transform the detected line from the robot’s reference

frame to the global one; figure 5.11b shows the same situation but using a localization

belief with matching time-stamp. The consequences of using an old position belief

for the feature extraction can be noted on Figure 5.11a where the extracted features

are drifted from real feature. The same behavior is present when extracting punctual

landmarks (e.g. Reflector Beacons). Figure 5.12 shows a conceptual diagram of our

solution.
1This process is also called refiltering

65

Figure 5.10: Time-stamp matching at feature extraction

(a) Erroneous Transformation (b) Correct Transformation

Figure 5.11: Line Feature Extraction while spinning at +1rad/s; orange lines represent
correct walls from a previously generated map.

66

Figure 5.12: Deadline Extension Mechanism

From a control point of view, the stability of the localization algorithm depends on

the ratio of uncertainty growth (due to successive predictions) to uncertainty shrinking

(due to corrections) which must assure a bounded uncertainty for permanent regime

states (constant or null robot velocity). In the case where no movement is carried,

the uncertainty tends to decrease beyond reasonable values; to avoid this, an artificial

lower bound is used. Note that such lower bound is imposed to the covariance matrix

itself after the correction step and thus not affecting eventual accuracy increase. As for

constant velocity movement, the uncertainty tends to grow until a stable limit depending

on velocity itself as long as N is sufficient.

Table 5.1: Temporal Aspects

Sensor Period(ms) Latency(ms) Computation
Time(ms)

Odometry 50± 15 < 2 < 5
Line Features (LRF) 500± 50 < 25 150
Reflector Beacon Fea-
tures (LRF)

500± 50 < 25 10

EKF Prediction - < 1 < 5
EKF Correction - < 1 90

Table 5.1 shows many timing aspects of the system. Tasks related to data ac-

quisition and pre-processing have well known periods, latency and computation time.

Localization related tasks (Prediction & Correction), on the other hand, are triggered

by notifications from the Feature Extraction services. Note that due to the higher rate

of Odometry readings, in contrast to Line Features ones, an average of five prediction

steps need to be refiltered after a Localization Correction steming from Line Features.

67

Chapter 6: Specific Application

6.1: Introduction

In the last years the use of instrumented industrial robots to test production line

result’s quality is increasing. The development of a mobile diagnostic robot in this

context satisfies the needs of standards and repeatability of the quality controls and

guarantees flexibility according to the product under diagnosis and the environment

where the test is executed. The robot can autonomously move in weakly structured

environments and reconfigure the measurement instruments placement in relation to

the type of product and its position. Given the mobile nature of such instrumented

robot, the use of expensive measurement instrumentation is less prohibitive than if

used on multiple different static testing stations. The system developed in this work

was deployed in one of this applications.

A collaboration project between the mechanical and automation departments

of UNIVPM and an external partner was established in 2009 to build one of this in-

spection robots where the mechanical department would develop the measurement

equipment and the automation one would develop the robotics related software. The

mobile platform itself would be bought from a commercial provider and should include

the necessary mechanical and electronic infrastructures.

This project is now on its final deployment stages and in the following sections

we describe the application requisites from the robotics view, the chosen commercial

mobile platform, the additional services and functionalities implemented for this spe-

cific application and finally a discussion about the performance of the system in this

application.

6.2: The Washing Machine Reliability Lab

In a reliability test laboratory for household washing machines (WM), multiple

rows of WMs are kept in operation for long periods in order to enhance quality control.

Figure 6.1 shows a typical layout of this laboratories. Note that the WMs are confined in

multiple narrow corridors mandating accurate navigation. Figure 6.2 shows a realistic

experimental setup that gives the reader a better impression of the WM corridors. The

68

Figure 6.1: Laboratory layout reproduced in a simulation environment

Figure 6.2: Experimental Setup

69

following brief list summarizes other requisites of the system:

Requisite 1: The robot should repeatably approach a desired washing machine with

accurate position and heading (θrel < 0.02) with regard to the WM’s frontal face;

Requisite 2: WMs eventually move from their assigned poses due to constant vibra-

tion, clothes loading & unloading, etc;

Requisite 3: The robot should be able to track its position with good accuracy across

the whole lab.

6.3: Mobile Platform

The proposed work will take advantage of a Robulab80 mobile robot base man-

ufactured by Robosoft R©[1]. This platform provides a very flexible and powerful envi-

ronment for robotics related development and research.

Figure 6.3: Robulab80 Mobile Robot Base

70

This robot’s embedded processing unit is a PC-104 running Windows XP Em-

bedded R©. For locomotion, a standard differential drive with a Castor wheel setup

is used and precision encoders are available in both driving wheels. The robot also

employs a SICK S3000 Laser Range Finder and two generic ultrasound single-beam

range finders. Table 6.1 shows some electromechanical specifications of the robot.

Table 6.1: Robulab 80 Specifications

Specification Value Unit

Maximum Payload 80 Kg
Maximum Wheel Speed 2.6 m

s

Autonomy (between charges) 4 h
Top base for extensions 772 x 590 x 475 (L x W x H) mm

6.4: Additional Service

In a minimalist approach, a single service WMApproach was implemented to cope

with the application specific aspects of this application. This service is responsible for

detecting a WM’s face, inferring its center and computing the correct approach pose.

Detecting the WM’s face consists in finding a contiguous line (from the LineEx-

traction service) with the same length of the WM’s face in question (typically 60cm). In-

ferring the WM’s center consists in computing the point behind that line that denotes the

virtual center of the WM. This naive approach, in the sense that many other lines may

pass this criteria generating false positives, is not a problem in this application since

the approximate positions of the WMs are known and thus can be checked against

the detected ones; this detection is only necessary to detect small displacements or

rotations.

Computing the correct approach pose takes into account three parameters that

vary depending on the measurement to be taken. Figure 6.4 illustrates this three

parameters together with two more parameters that dictate the WM’s dimensions:

WMInstance.Depth and WMInstance.FaceSize. WMInstance.AppYDist specifies the dis-

tance between the robot’s movement axis and the WM’s face and WMInstance.AppXDist

is the displacement between the robot’s center (App.Point) and the center of the WM’s

face projected onto the robot’s movement axis.

Using those parameters, the service applies the correct translation and rotation

71

to map the approach point to the global reference frame. After this, the service option-

ally sends the correct request to the PoseControl service or just reports the computed

approach position.

Figure 6.4: Approach Pose (red arrows) Parallel to the Washing Machine’s Face (bold red
line)

6.5: Additional Tasks at the Mission Management Layer

To support this new capcability, a specific task was added to the FSMTaskManager

as previously shown in figure 5.9. An example of this task can be seen in listing 6.1.

Listing 6.1: XML task determining a target WM to be approached

1 <InspectWM>

2 <WM X=”6 .1 ” Y=”−8.5” Theta =”3 .14” dTol = ”0 .8 ” thTo l =”0.5” />

3 <SearchEndPoint X= ”5 .1 ” Y=”−7.5” Theta =”−1.57”/>

4 </InspectWM>

In line 2, the target WM is specified by its center’s pose, being the heading determined

by the WM’s frontal face and with distance and angle tolerances. Line 3 specifies a

72

point to which the robot starts driving to while searching for the specified WM; if this

point is reached without successful WM detection and approach, the task is considered

failure.

Listing 6.2: XML task to redefine the WM’s parameters

1 <SetAppWMParams FaceSize = ”0 .6 ” Depth = ”0 .3 ” AppYDist = ”0 .46”

AppXDist =”0.25” />

In listing 6.2, the redefinition of the WM’s dimensions and the definition of the approach

point are updated. This is very important in an environment where different models of

washing machines are present. This parameters are discussed in section 6.4.

6.6: Results

6.6.1: Washing Machine Approach

Figure 6.5 shows the robot approaching a WM from a distant location and then

approaching another WM right in front of its current position. Note also the effects

of the concurrent localization system working and thus bounding the uncertainty to a

small value. This also showcases the operation of the PoseControl service that drove

the robot from the current position, near (0, 0), to the approach position.

73

(a) (b) Approaching first WM

(c) (d) First approach finished

(e) Approaching Second WM (f) Second approach finished

Figure 6.5: Washing Machine’s approaches using the WMApproach service together with

the PoseControl one and concurrently with the localization system

74

(a) Top view of the setup for the experiment;
note the measurement laser placed on top of the
robotic base at each’s totation.

(b) Results after many approaches with random
WM disturbances

Figure 6.6: Approaches Accuracy Experiment

In order to better evaluate the accuracy and repeatability of the heading posi-

tioning, which was more relevant to this application, a simple experiment was carried

using a laser positioned in the origin of the robot’s reference frame and pointing to the

left in the perpendicular direction to the robot’s movement axis. With this setup, we

set the robot to approach the WM many times from different starting positions and with

small WM’s pose disturbances; then with a magic marker the projection of the laser

on the washing machine was registered. The setup for this experiment can be seen at

figure 6.6a and the results at figure 6.6b. Figure 6.7 shows frames extracted from a

video showing the robot first detecting the WM and inferring its approach position than

proceeding to perform such the approach.

75

(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Washing Machine approach for a radially drifted WM

6.6.2: Integration with external software and Deployment

As mentioned earlier, this solution was integrated to a LabVIEW R© software

through a network interface. In this event the advantage of the services-oriented ap-

proach was evident. At first, a series of meetings were carried to set up the contracts

76

between the two systems and to define a first scratch of the tasks representation. A

longer development period was then assigned to the implementation of the appropriate

application specific service. Finally two more meetings were necessary to formalize the

XML interface and to address unpredicted factors in the last meeting. Additionally, the

simulation version of the system, which exhibits the same network interface, was given

to the other team so that the integration process could be simulated by the other team

as early as possible.

Finally, the two systems were put to work together through the network and in a

complete test environment (with eight WMs). It took less than two work days to deploy

the system in this new environment. This was partly due to the flexibility offered by the

system and was deemed satisfactory by both teams.

The deployment procedure at the target environment could be summarized by:

• Establishing the origin of the coordinates reference frame so that the robot starts

its mapping task from there; this choice is not important and no accurate posi-

tioning of the robot is necessary. In our case this was made to coincide with the

WM’s plant origin.

• Distributing the reflector beacons described in section 5.1.1 in the environment.

• Driving the robot around (or setting up a set of trajectories to do so) the environe-

ment in a slower controlled manner with its mapping capability enabled.

• Saving the generated map to a file for posterior use.

77

Chapter 7: Conclusion

7.1: Summary

This project focused on the deployment of modern mobile robotics techniques

into a final industrial solution. In pursuing that goal we developed some interesting

mechanisms that may be of great avail for similar works. The adopted services ori-

ented architecture from chapter 4 seems very promising and it already proved itself

very useful in an industrial application, we believe that similar schemes will eventually

become an industry standard for robotics applications using this kind of technology.

Although the localization system developed in this work, from section 2.4.4 does

not employ the most modern algorithms as outlined by section 2.5, its performance

was very satisfactory and it easily met the requisites of the first targeted application

(see section 6.6).

Also related to the localization system, another contribution of this work is the

simple mechanism used to enable real-time operation presented in section 5.6. This

approach was imperative to the successful operation of the final system and some

variant of this solution necessarily should be present in commercial mobile robotics

products.

In the mission management end, the network interfaces provided by the robot

and described in section 5.5 produced very good results and were essential for the

application shown in chapter 6. The integration between the robot’s software and the

outer systems was accomplished in less than a week mostly due to the use of XML

messages through the HTTP interface.

7.2: Future Work

During the course of this work, many improvement directions were unfolded.

Some of the possible future improvements and standing challenges are:

• The localization system itself offers many improvement directions that could cer-

tainly enhance the robustness of the system. Future works shall focus on imple-

menting a parallel service for pose recovering.

78

• The current mapping system is useful but uses a heuristic, credibility based, ap-

proach. Although this solution satisfactorily met the requisites for the deployed

application, a more formally backed approach is desired for applications where

the mapping capability plays a more important role.

• The actual Pose Controller should be enhanced to restrict the control action near

the target position since with the current implementation some undesired oscilla-

tions may occur when reaching final accurate poses.

• Currently the gains for the Pose Controller are chosen based on the current task

since they govern the trajectory followed by the robot but further development

should focus on an automatic adaptive approach to enhance obstacle avoidance.

• Future development of an user friendly graphical environment for task list gener-

ation.

• Although the system has been exhaustively tested in its final deployment envi-

ronment, more evaluation of the implemented services in order to produce more

tactile and quantitative results is indeed needed.

Beware of bugs in the above code; I have only
proved it correct, not tried it.

Donald Knuth

79

Annex A: XML Messages

In this annex complete XML messages are exposed to give an deeper idea of

the network interface described in section 5.5.

Listing A.1 shows a typical response for a HTTP GET request at the services

endpoint. This response contains a representation of the current tasks list, some flags

that express the operation state of the robot and finally data regarding the actual robot’s

estimated position and velocity at the present moment.

Listing A.1: HTTP GET State Response, Commented

1 <?xml vers ion = ”1 .0 ” encoding =” u t f −8”?>

2 <FsmtaskmanagerState xmlns =” h t t p : / / schemas . tempur i . org /2009/09 /

fsmtaskmanager . html ” xmlns : d=” h t t p : / / schemas . m ic roso f t . com/

xw/2004/10 / dssp . html ” xmlns : s =” h t t p : / / www.w3 . org /2003/05 /

soap−envelope ” xmlns : wsa=” h t t p : / / schemas . xmlsoap . org / ws

/2004/08 / addressing ”>

3 < t a s k L i s t ><!−− shows the tasks s t i l l i n the execut ion queue

−−>
4 <Task><desc r i p t i on>InspectWM</ desc r i p t i on ></Task>

5 <Task><desc r i p t i on>Fo l lowTra jec to ry </ desc r i p t i on ></Task>

6 <Task><desc r i p t i on>Fo l lowTra jec to ry </ desc r i p t i on ></Task>

7 <Task><desc r i p t i on>InspectWM</ desc r i p t i on ></Task>

8 <Task><desc r i p t i on>Fo l lowTra jec to ry </ desc r i p t i on ></Task>

9 </ t a s k L i s t>

10 <currentTaskRef><!−− shows the cu r ren t task −−>
11 <desc r i p t i on>InspectWM</ desc r i p t i on>

12 </ currentTaskRef>

13

14 <i sHa l ted>f a l se </ i sHa l ted> <!−− tasks execut ion ha l ted by

HalfFSM command −−>
15 < i s I d l e >f a l se </ i s I d l e > <!−− tasks l i s t i s empty −−>
16

17 <!−− c o l l i s i o n de tec t i on b lock ing c o n t r o l −−>
18 < l as tB lock >2010−02−23T12:58:09.800132+01:00< / l as tB lock>

19 <blocked>f a l se </ blocked>

80

20

21 <!−− robot ’ s s t a te −−>
22

23 <!−− v e l o c i t i e s −−>
24 <v ang>0</v ang>

25 <v tan>0</v tan>

26

27 <!−− p o s i t i o n −−>
28 <rX>5.4966397367243394</ rX>

29 <rY>−7.1952432364080208</rY>

30 <rTheta>−1.10764479637146</ rTheta>

31

32 </FsmtaskmanagerState>

Listing A.2 shows all the available operations supported by the FSMTaskManager

service.

Listing A.2: Current Supported Tasks, Commented

1 <ResetTaskList />

2 <HaltFSM/>

3 <ResumeFSM/>

4

5 <Fol lowLdcVxList>

6 <!−− s p e c i f i e s a custom l i s t o f po in t s (t r a j e c t o r y) to f o l l o w

−−>
7 <Vertex X=”5 .45” Y=”−19.0” Theta =”−1.57079” />

8 <Vertex X=”5 .45” Y=”−19.0” Theta =”1.57079” />

9 <Vertex X=”5 .45” Y=”−10.0” Theta =”1.57079” />

10 </ Fol lowLdcVxList>

11

12 <LocalMove a = ”0 .5 ” d=”2.0” />

13 <!−− requests a movement r e l a t i v e to the cu r ren t p o s i t i o n ; ” a ”

stands f o r angle (rad ians) and ” d ” f o r forward movement −−>
14

15 <Fo l lowTra jec to ry>

16

81

17 <T r a j e c t o r y number =”0” f i l e =” T r a j e c t o r i e s . xml ”/>

18 <!−− loads a p rev ious l y computed t r a j e c t o r y from f i l e −−>
19

20 <StopPoint X=”5 .45” Y=”−6.0” Tol = ”0 .5 ” s topAtPo in t =” t r ue ”/>

21 <!−− s p e c i f i e s a stop po in t d i f f e r e n t than the end of the

t r a j e c t o r y −−>
22

23 <ReturnPoint X=”5 .45” Y=”−10.0” Theta =”−1.57079”

resumeAtPoint =” t r ue ”/>

24 <!−− used to spec i f y a s t a r t po i n t d i f f e r e n t from the f i r s t

po i n t o f the t r a j e c t o r y −−>
25

26 </ Fo l lowTra jec to ry>

27

28

29 <InspectWM>

30

31 <WM X=”6 .1 ” Y=”−8.5” Theta =”3 .14” dTol = ”0 .8 ” thTo l =”0.5” />

32 <!−− s p e c i f i e s a t a r g e t washing machine (WM) . dTol and thTo l

spec i f y the maximum to le rance between s p e c i f i e d WM and

detected −−>
33

34 <SearchEndPoint X=”5 .45” Y=”−7.5” Theta =”−1.57”/>

35 <!−− Which po in t to stop searching f o r the WM; t h i s po in t i s

on ly reached i f no proper WM i s recognized −−>
36

37 </InspectWM>

38

39 <SetAppWMParams FaceSize = ”0 .6 ” Depth = ”0 .3 ” AppYDist = ”0 .46”

AppXDist =”0.25” />

40

41 <SetupEKF mapFile =”Mapped 5 . xml ”/>

42 <!−− s p e c i f i e s a f i l e to load environment i n f o rma t i on −−>
43

44 <Sleep delay =”3.0” />

82

And listing A.3 shows a typical task list.

Listing A.3: Typical Task List

1 <?xml vers ion = ”1 .0 ” encoding =” u t f −8”?>

2 <TaskLis t>

3 <Fo l lowTra jec to ry>

4 <T r a j e c t o r y number =”0” f i l e =”” />

5 <StopPoint X= ”5 .1 ” Y=”−6.0” Tol = ”0 .5 ” s topAtPo in t =” t r ue ”/>

6 </ Fo l lowTra jec to ry>

7

8 <InspectWM>

9 <WM X=”6 .1 ” Y=”−8.5” Theta =”3 .14” dTol = ”0 .8 ” thTo l =”0.5” />

10 <SearchEndPoint X= ”5 .1 ” Y=”−7.5” Theta =”−1.57”/>

11 <I nspec t i on wa i t =”2000”/>

12 </InspectWM>

13 <Fo l lowTra jec to ry>

14 <T r a j e c t o r y number =”0” f i l e =”” />

15 <ReturnPoint X= ”5 .1 ” Y=”−9.5” Theta =”−1.57079”

resumeAtPoint =” t r ue ”/>

16 </ Fo l lowTra jec to ry>

17 </ TaskLis t>

83

Bibliography

[1] Robosoft - advanced robotics solutions, http://www.robosoft.com/.

[2] L. Armesto, G. Ippoliti, S. Longhi, and J. Tornero. Probabilistic self-localization

and mapping - an asynchronous multirate approach. Robotics & Automation

Magazine, IEEE, 15(2):77–88, June 2008.

[3] L. Armesto and J. Tornero. Robust and efficient mobile robot self-localization

using laser scanner and geometrical maps. In Intelligent Robots and Systems,

2006 IEEE/RSJ International Conference on, pages 3080–3085, Oct. 2006.

[4] A. Astolfi. Exponential stabilization of a mobile robot. Proceedings of 3rd

European Control Conference, 1995.

[5] G.A. Borges and M.-J. Aldon. A split-and-merge segmentation algorithm for line

extraction in 2d range images. In Pattern Recognition, 2000. Proceedings. 15th

International Conference on, volume 1, pages 441–444 vol.1, 2000.

[6] Y. Chen and X. Bai. On robotics applications in service-oriented architecture.

2008.

[7] C. Christo and C. Cardeira. Service oriented architecture for mobile robot local-

ization. pages 888 –891, sept. 2007.

[8] Vinı́cius Menezes de Oliveira, Walter Fetter Lages, and Edson Roberto de Pieri.

Mobile robot control using sliding mode and neural network. IFAC Robot Control,

2003.

[9] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile

robots. volume 2, pages 1322 –1328 vol.2, 1999.

[10] Chiara Fulgenzi, Gianluca Ippoliti, and Sauro Longhi. Experimental valida-

tion of fastslam algorithm integrated with a linear features based map. IFAC

Mechatronics 19, 609-616, 2009.

[11] J. E. Guivant and E. M. Nebot. Optimization of the simultaneous localization and

map-building algorithm for real-time implementation. Transactions on Robotics

and Automation, Vol. 17, No. 3, 2001.

84

[12] P. V. C. Hough. Method and means for recognizing complex patterns. U.S. Patent

3069654, 1962.

[13] Wei-Han Hung, P. Liu, and Shih-Chung Kang. Service-based simulator for security

robot. pages 1 –3, aug. 2008.

[14] T. Kailath. Linear systems. Prentice-Hall Information and System Science Series,

1980.

[15] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal

of Basic Engineering 82, 1960.

[16] H. Lang, Y. Wang, and C. W. de Silva. Mobile robot localization and object pose

estimation using optical encoder, vision and laser sensors. 2008.

[17] Sung-On Lee, Young-Jo Cho, Myung Hwang-Bo, Bum-Jae You, and Sang-Rok

Oh. A stable target-tracking control for unicycle mobile robots. volume 3, pages

1822 –1827 vol.3, 2000.

[18] J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking geo-

metric beacons. Transactions on Robotics and Automation, 1991.

[19] J.J. Leonard and H.F. Durrant-Whyte. Simultaneous map building and local-

ization for an autonomous mobile robot. In Intelligent Robots and Systems

’91. ’Intelligence for Mechanical Systems, Proceedings IROS ’91. IEEE/RSJ

International Workshop on, pages 1442–1447 vol.3, Nov 1991.

[20] Xiao Lua, Huanshui Zhang, Wei Wangb, and Kok-Lay Teo. Kalman filtering for

multiple time-delay systems. Automatica, August 2005.

[21] Nardênio A. Martins, Douglas W. Bertol, Edson R. De Pieri, and Eugênio B. Caste-

lan. Control of Mobile Robot Considering Actuator Dynamics with Uncertainties in

the Kinematic and Dynamic Models. Springer, 2009.

[22] M. Montemerlo and S. Thrun. Simultaneous localization and mapping with un-

known data association using fastslam. volume 2, pages 1985 – 1991 vol.2, sept.

2003.

[23] P. Newman, J. Leonard, J.D. Tardos, and J. Neira. Explore and return: exper-

imental validation of real-time concurrent mapping and localization. In Robotics

and Automation, 2002. Proceedings. ICRA ’02. IEEE International Conference on,

volume 2, pages 1802–1809 vol.2, 2002.

85

[24] Sirichai Pornsarayouth and Manop Wongsaisuwan. Sensor fusion of delay and

non-delay signal using kalman filter with moving covariance. In Proceedings of

the 2008 IEEE International Conference on Robotics and Biomimetics, 2009.

[25] D. Schleicher, L. M. Bergasa, M. Ocana, R. Barea, and M. E. Lopez. Real-time

hierarchical outdoor slam based on stereovision and gps fusion. Transactions on

Intelligent Transportation Systems, Vol. 10, No. 3, 2009.

[26] R. Siegwart and I. Nourbakhsh. Introduction to Autonomous Mobile Robots. MIT

Press, 2nd edition, 2004.

[27] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2nd edition,

2006.

[28] Jiang Yan, Liu Guorong, Luo Shenghua, and Zhou Lian. A review on localiza-

tion and mapping algorithm based on extended kalman filtering. In Information

Technology and Applications, 2009. IFITA ’09. International Forum on, volume 2,

pages 435–440, May 2009.

86

